
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Jan Bednář

Self-Localization of Unmanned Aerial Vehicles Using Visual
Inertial Odometry

Department of Cybernetics

Project supervisor: Ing. Matěj Petrĺık

January 2020

Declaration of authorship

I hereby declare that I wrote the presented thesis on my own and that I cited all the
used information sources in compliance with the Methodical instructions about the ethical
principles for writing an academic thesis.

Prague, date............................. ...

signature

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

420192Personal ID number:Bednář JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Self-Localization of Unmanned Aerial Vehicles Using Visual Inertial Odometry

Master’s thesis title in Czech:

Sebelokalizace bezpilotní helikoptéry pomocí vizuálně-inerciální odometrie

Guidelines:
The focus of this thesis is to analyze the performance of available state-of-the-art visual-inertial odometry (VIO) [1] algorithms
and to evaluate the suitability for integration into the control system of unmanned aerial vehicles (UAVs). A trajectory-shaping
filter that imposes constraints on the motion of the UAV based on the properties of the chosen VIO algorithm should be
designed. The following tasks will be solved:
• Perform a survey of available VIO algorithms, especially SVO [2] and MSCKF [3, 4].
• Become familiar with stereo cameras, particularly Intel RealSense cameras, and their integration into the ROS middleware,
Gazebo simulator and MRS group UAV platform.
• Prepare a dataset from a real-world UAV flight with precise GPS, and compare the performance of the algorithms on
this dataset.
• Integrate the algorithms into the Gazebo simulator and examine how the mounting position of the camera on the UAV
affects the performance of the algorithms.
• Prepare the algorithms for integration into the position feedback control loop of the UAV and test its feasibility in the
Gazebo simulator.
• Design and implement a trajectory-shaping filter that improves the localization precision of the algorithms.

Bibliography / sources:
[1] J. Delmerico and D. Scaramuzza, "A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for
Flying Robots," 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, 2018, pp.
2502-2509. doi: 10.1109/ICRA.2018.8460664
[2] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual odometry,” in IEEE International
Conference on Robotics and Automation (ICRA), 2014.
[3] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter for vision- aided inertial navigation,” in
Proceedings 2007 IEEE International Conference on Robotics and Automation, April 2007, pp. 3565–3572.
[4] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J. Taylor, and V. Kumar, “Robust stereo visual
inertial odometry for fast autonomous flight,” CoRR, vol. abs/1712.00036, 2017. [Online]. Available:
http://arxiv.org/abs/1712.00036.

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Matěj Petrlík, Multi-robot Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Ing. Martin Saska, Dr. rer. nat., Multi-robot Systems, FEE

Deadline for master's thesis submission: 07.01.2020Date of master’s thesis assignment: 13.09.2019

Assignment valid until:
by the end of summer semester 2020/2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Matěj Petrlík
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank my thesis adviser, Ing. Matěj Petrĺık, for his outstanding leader-
ship, endless patience, and the immense amount of helpful advice that helped me with this
thesis. Next, I would like to thank all members of the MRS group who backed me up when
necessary.

I would like to thank also to my family for astonishing support during the whole study
period. Without their support, it would not be possible to manage that.

Finally, I would like to express my most excellent thanks to my girlfriend Dominika,
who always stood behind my back and supported me all the time.

i

Abstract

This thesis is concerned with visual-inertial odometry (VIO) algorithms
and their usability and suitability for integration into the feedback loop of
the unmanned aerial vehicle (UAV) control system. The main part of the
thesis is focused on the comparison of chosen VIO algorithms in terms of
pose estimation precision for chosen camera mounting orientations, camera
frame rate, UAV velocity and the feedback suitability. According to prior
survey of VIO algorithms precision, availability and fitness on UAV deploy-
ment, three VIO algorithms are chosen for this thesis, namely S-MSCKF,
SVO, and VINS-Fusion. The VIO algorithms performance is evaluated in
both the simulation environment and the real environment to prove the
suitability for feedback loop integration. The trajectory-shaping filter was
implemented to smooth the trajectory by constraining the accelerations
according to the UAV dynamics. Such filter improves not only the preci-
sion of VIO pose estimation but also the similarity of the control reference
generated from the tracked trajectory. Lastly, the feedback integration for
tested algorithms is presented for all used VIO algorithms in the simulator
and partially in the real deployment.

Keywords: unmanned aerial vehicle, visual-inertial odometry, inertial
measurement unit, cameras, trajectory shaping, pose estimation, camera
calibration, camera orientation, feedback control

Abstrakt

Tato práce se zabývá vhodnost́ı použit́ı algoritmů vizuálně-inerciálńı
odometrie (VIO) pro integraci do zpětnovazebńıho ř́ızeńı bezpilotńıho
letounu (UAV). Hlavńı část této práce je zaměřena na porovnáńı vy-
braných VIO algoritmů z hlediska přesnosti estimace polohy UAV v
závislosti na použité orientaci kamery, sńımkové frekvenci použité kamery,
rychlosti UAV a vhodnosti použit́ı ve zpětnovazebńım ř́ızeńı. Dle prvotńıho
pr̊uzkumu na základě přesnosti, dostupnosti a vhodnosti VIO algoritmů pro
použit́ı na UAV byly vybrány tři algoritmy, a to S-MSCKF, SVO a VINS-
Fusion. Výkonnost VIO algoritmů pro zpětnovazebńı ř́ızeńı je testována
jak v simulačńım, tak v reálném prostřed́ı. Dále je implementováno vyhla-
zováńı trajektorie, které vyhlad́ı trajektorii použit́ım akceleračńıch omezeńı
dynamiky UAV. Takový filtr zlepšuje nejen přesnost odhadu pozice z VIO,
ale také podobnost ř́ıd́ıćı reference vygenerované ze sledované trajektorie.
V posledńı části jsou použité VIO algoritmy testovány ve zpětnovazebńım
ř́ızeńı UAV jak v simulačńım, tak v reálném prostřed́ı.

Kĺıčová slova: bezpilotńı letoun, vizuálně-inerciálńı odometrie, in-
erciálńı měř́ıćı jednotka, kamery, vyhlazováńı trajektorie, estimace pozice,
kalibrace kamery, orientace kamery, ř́ızeńı ve zpětné vazbě

i

ii

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.0.1 Related work . 2

1.0.2 Preliminaries . 4

1.0.3 Contribution . 8

1.0.4 Outline . 9

2 Hardware setup 11

2.1 Intel RealSense cameras . 11

2.1.1 Depth camera - D435i . 11

2.1.2 Tracking camera - T265 . 12

2.1.3 IMU . 13

2.1.4 Camera installation . 13

2.2 Calibration tools . 14

2.2.1 Kalibr . 14

2.2.2 Intel RealSense IMU Calibration tool 17

2.2.3 IMU Noise Model . 17

2.3 UAV platform . 17

3 Vision Algorithms 19

3.1 Stereo Multi-State Constraint Kalman Filter (S-MSCKF) 19

3.1.1 Implementation . 22

3.2 Semi-Direct Visual Odometry (SVO) . 23

3.2.1 Implementation . 27

3.3 VINS-Mono . 28

3.3.1 Implementation . 36

iv Contents

4 Practical evaluation 39

4.1 Evaluation metrics . 39

4.2 Trajectory planning . 41

4.3 Trajectory shaping . 44

4.4 Gazebo simulator . 46

4.4.1 S-MSCKF . 47

4.4.2 SVO . 48

4.4.3 VINS-Fusion . 48

4.5 Algorithm compatibility with MRS system . 48

4.6 Testing scenarios . 49

4.7 Simulator experiments . 50

4.7.1 Camera orientation test . 51

4.7.2 High altitude test . 52

4.7.3 High FPS rate . 54

4.7.4 Feedback control . 55

4.8 Real experiments . 58

4.8.1 Dataset acquisition . 58

4.8.2 Dataset algorithms comparison . 60

4.8.3 Feedback control with the real UAV 63

5 Conclusion 67

5.0.1 Future work . 68

Bibliography 69

Appendices 75

.1 List of abbreviations . 77

iv

List of Figures

1.1 Examples of various UAV applications . 2

1.2 Coordinate frames system of the UAV . 6

1.3 Control pipeline diagram of the UAV . 7

2.1 Intel RealSense D435i camera . 12

2.2 Intel RealSense T265 camera . 13

2.3 The Kalibr calibration output figure of the reprojection error 16

2.4 The UAV platform . 18

3.1 Comparison of S-MSCKF precision and performance 21

3.2 SVO frames notation . 24

3.3 SVO feature alignment strategies . 25

3.4 Depth estimation for SVO . 26

3.5 SVO interpretation of stereo camera system 26

3.6 VINS-Mono visual-inertial alignment . 29

3.7 Marginalization process for VINS-Mono . 31

3.8 Relocalization and pose graph optimization for VINS-Mono 32

3.9 Illustration of the pose graph for VINS-Mono 33

3.10 Indoor experiment results for VINS-Mono . 34

3.11 Illustration of temporal misalignment . 35

3.12 Temporal calibration influence on VINS-Mono 36

4.1 Example of ATE . 40

4.2 Example of RPE . 41

vi List of Figures

4.3 Trajectory samples for constant velocity assumption 42

4.4 Velocity and acceleration profile for constant velocity assumption 43

4.5 Example application of acceleration constraints on the trajectory 44

4.6 Variable velocity trajectory example . 45

4.7 Simulation camera attachment on the UAV 47

4.8 Example of a successful trial of the camera orientation test for S-MSCKF . . 53

4.9 Figure of failed trial of camera orientation test for VINS-Fusion 53

4.10 Example of precise pose estimation of VINS-Fusion algorithm in feedback con-
trol in the simulation environment . 57

4.11 Example of drifting pose estimation of SVO algorithm in feedback control in
the simulation environment . 58

4.12 Real camera attachment on the UAV . 59

4.13 Pattern projection onto D435i camera . 62

4.14 S-MSCKF feature detection on corrupted image 62

4.15 VINS-Fusion feature detection on corrupted image 62

4.16 Feedback loop control with S-MSCKF algorithm on the real UAV 63

4.17 Feedback loop control with SVO algorithm on the real UAV 64

4.18 S-MSCKF feedback loop test with fixed UAV orientation 65

vi

List of Tables

2.1 List of supported resolution/frame rate combinations for RealSense D435i infra
module . 12

4.1 Camera orientation test in simulator environment 51

4.2 High altitude test in the simulation environment 54

4.3 High FPS rate test in the simulation environment 55

4.4 Results of feedback control test in the simulation environment 56

4.5 Results of feedback control test in longer duration test in the simulation envi-
ronment . 57

4.6 Algorithm comparison on real datasets . 61

1 CD Content . 77

2 Lists of abbreviations . 78

viii List of Tables

viii

Chapter 1

Introduction

The recent growth in the availability of various unmanned aerial vehicles (UAVs) for
both personal usage and commercial applications increased general interest in these devices.
Thanks to the rising utility of UAV, even more industrial applications [1] are planned for the
future. Investments into the development of more computationally powerful devices, cheaper
and more precise sensors as well as investments into the research are becoming more appeal-
ing. Some of the current research includes e.g., optimal trajectory tracking for UAVs using
model predictive controller (MPC) together with non-linear state feedback [2], onboard rela-
tive localization method based on ultraviolet light (UVDAR), used for realtime control of a
leader-follower formation of UAVs [3] and data collection planning approach based on Dubins
Orienteering Problem with Neighborhoods (DOPN) to determine the sequence of visits to
the most rewarding subsets of target locations [4]. Finally, the development in these fields
allowed to accomplish ambitious scenarios such as agile autonomous landing on a car moving
at 15 km h−1 [5], autonomous cooperative localization, grasping and delivering of colored fer-
rous objects [6, 7], autonomous realtime monitoring of large areas with Micro Aerial Vehicles
(MAVs) with minimal sensory and computational resources [8]. An autonomous Search And
Rescue (SAR) operation within a constrained and hostile environment [9] is an example of
a more practical UAV deployment based on previous research. The UAVs also helps with
condition monitoring of interiors of historical buildings1 [10] such as churches, castles, etc.
Some of previously mentioned applications are shown in Figure 1.1.

All of these scenarios are a step closer to include the UAVs in wide-spread applications.
A research project [11] includes the UAVs as effective monitoring, diagnostic, and reporting
unit in the city infrastructure. The UAVs can improve the safety and efficiency of building
sites, where they can be deployed in various operations, e.g., pre-investigation processes of the
suitable future site, continuous monitoring of individual operations, and precise measurements
during site surveys. Also, the UAVs are well suited to handle utility infrastructure inspection
in the road tunnels, where otherwise, a human worker has to perform the task, which can be
risky in case of failure or accident.

1https://dronument.cz/

https://dronument.cz/

2 Chapter 1. Introduction

Figure 1.1: Examples of various UAV applications. The photo at the top left corner shows the magnetic brick
holder attached to the UAV - scenario for MBZIRC 2020. At the top right corner is a UAV during the DARPA
challenge in August 2019 [9]. At the bottom left corner shows the swarm of two UAVs in the forest during
experiments with UVDAR [3]. In the bottom right corner is the UAV during church inspection [10].

1.0.1 Related work

UAV localization is an essential aspect of possible autonomous behavior making. The
autonomy allows to perform the designed task accurately, which can involve obstacle avoiding,
object transportation, or SAR scenarios. In most cases, the Global Navigation Satellite System
(GNSS) is used for localization due to its full availability and easy-to-use approach. However,
the GNSS system is providing a stable and reliable position only in the outdoor environment,
where no high obstacles cover the sky around the UAV. The GNSS system can reach the
best precision within meters, which might be not sufficient for precise localization that is
required by some applications. The GNSS outdoor-only availability limits the usage of the
GNSS in all kinds of applications that can cover the mentioned tasks as SAR, infrastructure
inspection, or any indoor scenario. The precision of GNSS can be improved with the usage
of Differential GNSS (DGNSS) or Real-Time Kinematic (RTK), which gives the centimeter
precision. However, these solutions require specific equipment i.e., a base station that achieves
accuracy improvement of the GNSS system by sending position corrections to the UAV. It is
quite impractical for commercial deployment. Hence such an option is mostly useful only in
experimental UAV deployments.

Barring GNSS, there are other forms of possible onboard sensors gathering knowledge
of UAV surroundings suitable for localization. One of the essential motivations is the in-

3

dependence on GNSS, since, apart from being imprecise and unavailable, GNSS limits the
UAV deployment to large open areas with direct satellite visibility. One example of differ-
ent localization methods is the LiDAR-based localization. LiDAR technology is a laser-based
time-of-flight method for measuring the distance from obstacles. The advantage of LiDAR is
the independence on weather conditions such as bright sunlight. Next, LiDAR can also be
used during the night or under unfavorable lighting conditions. Moreover, LiDAR can ob-
tain the data even from textrureless objects. However, LiDAR technology is dependent on
the reflectivity of the surface. Also, the wide-open areas can be problematic because data
scans might seem to be similar for a different position, hence resulting position estimation
might not be accurate. Another issue for using LiDAR is the price (especially for multi-planes
version) and sensor weight, which is crucial for the UAV. An example of LiDAR-based local-
ization is the Hector SLAM [12] for single-plane LiDARs and [13] for multiple-plane LiDARs.
Another type is vision-based localization methods. The vision-based methods use a camera
unit to obtain information from the surroundings. Cameras have the main disadvantage in
strong dependence on weather conditions, especially the lighting conditions. For sudden light
changes, the camera must react with exposure adjustment, which might be a limitation for
some applications. However, cameras have several significant advantages over other methods.
First, cameras are a much cheaper alternative to GNSS than LiDAR, which is crucial for
practical applications. Cameras are also a lightweight and low-cost way to localize the UAV,
contrary to more massive and much more expensive LiDAR sensors. These are the reasons
why the thesis is focused only on visual-based methods.

Precise visual state and motion estimation for the UAV has been under intensive devel-
opment in recent years. Various approaches are combining a monocular or stereo camera and
an IMU (Inertial Measurement Unit) in different ways. Formerly, a single camera was used to
estimate the state, especially the monocular variant due to its low price, smaller size, and easy
setup. The camera state (motion) estimation is referred to as Visual Odometry (VO). How-
ever, the monocular setup cannot correctly recover the metric scale and feature depth. This
limitation can be partially balanced using a low-cost IMU. It gives the system the ability to
retrieve the metric scale as well as roll and pitch angles. Additionally, the IMU can effectively
substitute the camera system in hostile visual conditions such as motion blur, textureless
area, and rapid illumination changes. For a short time, the IMU can be fused either as loosely
coupled where the camera and IMU data are treated separately, i.e., the IMU assists in the
visual structure or as tightly coupled where IMU data are precalculated and then used to
improve the vision part. The camera-IMU setup refers to Visual-Inertial Odometry (VIO).
Nowadays, onboard CPUs become much faster and able to handle the more demanding stereo
camera systems. An immense advantage of the stereo system is the precise capability of fea-
ture depth estimation thanks to the camera baseline increasing the pose estimation accuracy
in various environments and support rapid motion and rotation. Together with the IMU,
it delivers robust state estimation. Further on, only stereo-camera supported algorithms are
assumed.

VIO algorithms can be divided into optimization-based and filter-based approaches.
The filter-based methods generally rely on an Extended Kalman Filter (EKF), where the
IMU is used for the state propagation, and the vision poses are used for the update step.
Optimization-based methods rely on jointly optimizing the residuals of image and IMU data
measurements to obtain the state estimates. However, to ensure the consistent processing time
per frame, the bounded-size sliding window has to be implemented along with marginalization

4 Chapter 1. Introduction

to reduce the number of optimization states. Further on, the image extraction part can be
divided into feature-based and direct methods. Feature-based methods extract the features in
the image and track them in the following images by minimizing the reprojection error. Direct
methods are working directly on pixel intensity to minimize the photometric error. Most of
the computational time for the feature-based methods is used on feature extraction, which
causes a high constant computational cost per frame. In contrast, direct methods require a
good initial guess. Feature-based methods are often used in real-world engineering deployment
due to robustness, while direct methods can be easily extended to dense mapping.

Currently, there are several benchmark studies for visual state estimation. A recent
benchmark comparison regarding monocular VIOs for UAVs is [14]. The authors take into ac-
count many state-of-the-art VIOs and compare them in terms of computational requirements
as well as in terms of translation errors and absolute translation error on the EuRoC dataset
[15]. Next, there are other visual odometry comparisons as [16, 17], but it is related only
to non-inertial methods or non-6DoF variants [18]. However, all of the localization methods
are tested only on publicly available benchmarks, which are usually based on custom sen-
sor set. Because of that, several VIO algorithms are chosen and compared regarding camera
orientation in this thesis. Furthermore, the mentioned benchmarks are assuming a specific
camera (camera-IMU) sets which are not off-the-shelf. As mentioned in [14], there is a plen-
tiful variety of VIO implementations suitable for a stereo setup. However, not all of them
are publicly available, as [19, 20, 21]. The selection process from the public ones follows. An
example of filter-based VIOs is S-MSCKF algorithm [22] or ROVIO algorithm [23, 24]. Both
algorithms are based on EKF. However, the ROVIO algorithm for the stereo-camera setup is
not recommended due to implementation issues. Hence it will not be compared in this the-
sis. For optimization-based approaches, there are several variants as SVO [25], VINS-Fusion
[26] or OKVIS [27]. VINS-Fusion algorithm compares the position estimation w.r.t. OKVIS
algorithm. As seemed from results published in [26], VINS-Fusion pose estimation is more
precise than OKVIS. Both VINS-Fusion and OKVIS are optimization-based algorithms with
generally similar approaches. Hence only VINS-Fusion is assumed in this thesis together with
different optimization approach in SVO.

1.0.2 Preliminaries

Before continuing with the detailed description of the vision algorithms, it is fitting to
introduce the components of the system used for the evaluation of the algorithms. Notably,
the basics of the Robot Operating System (ROS) system [28] are briefly described as well as
the used MRS system, especially the MPC tracker [29] and SO3 controller [30].

Robot Operating System (ROS)

ROS is an open-source middleware defining and providing a structured communication
layer above the host operating system. The authors have defined the goals of the ROS as
follows:

• Peer-to-peer communication ensures connectivity between ROS processes and the
number of different hosts to the peer-to-peer topology in realtime.

5

• Tools-based approach allows creating a microkernel module with a large number of
small tools to run various ROS components. These tools allow to perform various tasks
with the ROS, e.g., navigate through source code, visualize the topology, measure band-
width utilization, and so on.

• Multi-lingual form offers to code modules in ROS with different programming lan-
guages (C++, Python,..). Because the ROS specification is at the communication layer,
modules can be coded in different languages and work together. To further improve the
cross-platform independence, the interface definition language (IDL) is introduced to
define the messages between modules.

• Thin property proposes to place the libraries in separate packages supporting the mod-
ularity. The libraries are not dependent on the ROS, and hence they can be reused in
other projects out of the ROS. Contrarily, other open source projects libraries can be
reused in ROS as Player project [31] or OpenCV [32].

• Free and Open-Source. ROS is publicly available2 and distributed under BSD license.

This thesis is using ROS version Melodic3 installed on Ubuntu 18.044 operating system. The
basic ROS glossary used in the thesis is enumerated.

• Node - A computation process in ROS corresponding to a software module. Nodes are
communicating with other nodes using messages and services.

• Message - A data structure with a fixed format for communication between nodes. Each
message is published on a topic identified by a string. The main messages used in this
thesis are Odometry5, PoseWithCovariance6, IMU 7 and Image8.

• Topic - Topic is an interface between the nodes and the ROS network. A node can either
subscribe or publish to the topic. A single node can publish or subscribe to multiple
topics. Furthermore, several nodes can be publishing or subscribing to a single topic.

• Service - A service is a request/reply type of communication between the nodes. The
service is used for synchronous communication in contrary to the aforementioned topic
subscribe-publish scheme.

• Rosbag - A ROS file format for storing the ROS messages. It allows to record messages
during the experiment for later playback.

Another attractive feature of ROS is the handling of transformations between coordinate
frames. Usually, the robotic unit consists of several different sensors with their own coordinate
frames, which are related by a translation and rotation. In the thesis, the frames are the

2http://wiki.ros.org
3http://wiki.ros.org/melodic
4http://releases.ubuntu.com/bionic/
5http://docs.ros.org/melodic/api/nav_msgs/html/msg/Odometry.html
6http://docs.ros.org/melodic/api/geometry_msgs/html/msg/PoseWithCovariance.html
7http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Imu.html
8http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Image.html

http://wiki.ros.org
http://wiki.ros.org/melodic
http://releases.ubuntu.com/bionic/
http://docs.ros.org/melodic/api/nav_msgs/html/msg/Odometry.html
http://docs.ros.org/melodic/api/geometry_msgs/html/msg/PoseWithCovariance.html
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Imu.html
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Image.html

6 Chapter 1. Introduction

world frame, the UAV frame, the IMU frame, and the camera frame. The world frame is the
frame where the UAV is flying in. The world frame is essential for the control mechanism
to determine the UAV position, eventually orientation change. In the simulator, the UAV
starts at the origin of the world frame. In real experiments, the origin of the world frame
can be set appropriately to GPS coordinates if GPS is available. The UAV frame has its
origin in the center of the flight control unit (FCU) of the UAV. The IMU frame is either
the same as the UAV frame in case of simulation or the same as the camera frame in the
real deployment. Each of them has its own coordinate system oriented differently. The tf
ROS package constructs a dynamic transformation tree that relates the frames and offers a
convenient way to seamlessly transform data between these frames, including interpolation
between available transform messages.

UAV state

The state vector of the UAV is defined as

x = (r, ṙ, r̈,R, Ṙ), (1.1)

where r = [x, y, z]T is the UAV position and R(φ, θ, ψ) is the orientation in the world frame
w. The state variables linear acceleration r̈, orientation R and angular rate Ṙ are obtained
directly from the Flight Control Unit IMU. The coordinate frames notation is shown in Figure
1.2. The r and ṙ has to be estimated, more about that in Chapter 1.0.2.

b2

b1

b3

φ

θ

ψ

e2

e1

e3

r,R

Figure 1.2: The translation r = [x, y, z]T and orientation R(φ, θ, ψ) of the UAV expresses the relation between
the world frame w = {e1, e2, e3} and the body frame b = {b1,b2,b3}. Courtesy of [9]

Control pipeline

The MRS system is composed of a control pipeline with state estimation shown in
Figure 1.3. The system description from [29] is as follows. The pipeline for evaluation of
algorithm precision consists of several parts. The first part is the mission planner, which is

7

mostly the square follower in this thesis. The mission planner defines the required position rD
and orientation φD of the UAV which is handed over to the MPC tracker [29] to obtain the
command xD, ẋD, ẍD,φD,φ̇D and ẍD for the SO(3) controller. The MPC tracker repeatedly
solves the optimization problem

min
ut,vt

V (x,u) =
1

2

m−1∑
i=1

(eTi Qei + uTi Pui), (1.2)

xt+1 = Axt + But, ∀t ∈ {0, . . . ,m− 1} (1.3)

xt ≤ x maxt, ∀t ∈ {1, . . . ,m} (1.4)

xt ≥ x mint, ∀t ∈ {1, . . . ,m}, (1.5)

where x is the UAV state vector, the e = x− x̂ is the control error where x̂ is the trajectory
reference and u is the action input. The quadratic cost function from Equation (1.2) penalizes
the control error e and action input u over a horizon of m ∈ Z+ in length. Penalization
matrices Q and P are positive semi-definite. Constraint in Equation (1.3) forces the states
to follow the LTI model. Constraints in Equation (1.4) and 1.5 bound the states to a box to
limit the maximal acceleration and velocity.

The output of the MPC tracker creates the command values for the SO(3) controller
[30]. The controller produces the reference thrust and orientation reference for the embedded
attitude controller. The attitude controller commands the Electronic Speed Controllers (ESC)
of the UAV directly.

Mission

planner

MPC

tracker

SO(3)

controller

Attitude

controller

UAV

plant

State

estimation
Stereo Camera

VIO
Images + IMU1

VIO pose

rV , φV
IMU2

desired trajectory

rD, φD

xD, ẋD, ẍD

φD, φ̇D, φ̈D

R (φD, θD, ψD)

TD

motor

control

UAV state

estimate

onboard sensor data

Figure 1.3: Diagram of the control pipeline. The reference trajectory rD, φD serves as a setpoint for the MPC
in the MPC tracker, which outputs a command xD, ẋD, ẍD, φD, φ̇D, φ̈D for the non-linear SO(3) controller.
The non-linear controller produces the orientation and thrust reference for the embedded attitude controller.
(1) symbolizes the variant, when the IMU data comes from the same source as images, e.g. RealSense D435i
camera. (2) symbolizes the variant, when the IMU data are from the attitude controller (built-in IMU), e.g.
Gazebo simulator.

Pose estimation

Pose estimation description is taken from [9]. The components of the UAV position r
are independent, hence they can be processed separately. The z-component is obtained from

8 Chapter 1. Introduction

rangefinder-barometer fusion in a linear Kalman filter scheme. The filters for each x and y
are identical. Thus only x-axis is described. The state vector for x-axis is defined as

x = (x, ẋ, ẍ, ẍ(u), ẍ(d), θ), (1.6)

where ẍ(u) is the acceleration resulting from the control input, ẍ(d) is the acceleration from
the external disturbing forces (wind, propellers,...) and θ is the rotation along y-axis of the
world frame w.

Integration realized by the model obtains the velocity and the position, and as such, they
are prone to drift, so a position or velocity correction is necessary to stabilize the system. The
state of the UAV is estimated from the most suitable localization source, thanks to a bank
of Kalman filters for every localization method. A possible localization methods currently
available at the MRS system are GPS, GPS RTK, OpticFlow [33] and HectorSLAM [9].
Propeller-induced vibrations degrade direct measurements of acceleration, so it is not used to
correct the acceleration state variable. In this thesis, the output of the VIO algorithm is used
as a position correction for the UAV model.

1.0.3 Contribution

In this thesis, the VIO algorithms have been integrated into the feedback loop of the
UAV control system. Three algorithm have been chosen, according to the prior survey de-
scribed in Chapter 1.0.1. Firstly, the filter-based S-MSCKF algorithm [22] designed explicitly
for UAVs. Hence it covers fast motion, lower computational power, and sudden changes. Next,
the semi-direct VO algorithm called SVO [25] is introduced, which combines feature-based and
direct methods with robust probabilistic depth estimation, including motion priors. Lastly,
the optimization-based VINS-Fusion algorithm is presented, supporting the fusion of different
sensor suites based on VINS-Mono VIO. The work compares the algorithms on off-the-shelf
camera-IMU sensor sets, which are widely used in robotics.

The main contributions should be noted. Most of the VIO implementations are com-
pared against results on available public datasets. However, the VIO authors focus on achiev-
ing the best result on the given dataset, while in practice, the precision might be much different
in other conditions. This thesis focuses more on the possible camera orientations during the
flight, which are crucial, especially for outdoor deployment due to changing lighting condi-
tions. Next, the UAV trajectory smoothing is presented to improve UAV precision further.
The trajectory smoothing takes the originally planned trajectory and adjusts it to fulfill the
UAV acceleration constraints.

Lastly, the algorithms are deployed to the feedback loop of the control system of a
real UAV. Usually, the authors are proposing a new algorithm that is verified and compared
against other algorithms only on the available datasets or in the specific hand-carried scenar-
ios. Theoretically, the simulation experiments should be sufficient to prove the functionality.
However, the real deployment usually faces more complicated events that cannot be simply
modeled in the simulation. As this thesis shows, the simulation environment can give much
better estimations that cannot be equally achieved in a real deployment.

9

1.0.4 Outline

The rest of the thesis is outlined as follows. Firstly, the used hardware is described
in Chapter 2, including the Intel RealSense cameras, calibration process, and UAV platform
Next, the algorithms implementation details are described in Chapter 3 along with required
adjustments of algorithms for usage in this thesis. Lastly, the details regarding pre-test require-
ments as metric evaluation definition, testing scenarios explanation, and finally, simulation
and real experiments together with the results are described in Chapter 4. The content of the
CD and list of abbreviations are situated in Appendix.

10 Chapter 1. Introduction

Chapter 2

Hardware setup

In this chapter, the required steps for setting up the camera and UAV platform for
the real experiments are covered. The used calibration tools are described along with how to
proceed during the calibration.

2.1 Intel RealSense cameras

The continuous support along with easy setup, small form factor and reasonable price
were the reasons for choosing Intel RealSense cameras1 for the experimental evaluation of the
VIO algorithms in this thesis. Intel supports the development of ROS-based Wrapper2 for
Intel RealSense cameras which facilitates integration into the existing system of MRS group.
Nowadays, Intel offers depth and tracking cameras.

2.1.1 Depth camera - D435i

Intel RealSense D435i3, shown in Figure 2.1, was chosen from the available depth camera
sensors. D435i has an RGB sensor with 69.4◦ x 42.5◦ x 77◦ (+/− 3◦) (Horizontal x Vertical
x Diagonal) Field of View (FOV), 1920x1080 maximal resolution and maximal 30 FPS rate
for given resolution. The camera resolution is expressed in pixels throughout the thesis. Next,
the D435i camera consists of infrared stereo camera pair with 50 mm baseline and infrared
projector to assist with depth estimation in low light and textureless environments. Further on,
only an infrared camera pair is considered when the D435i camera is mentioned. The camera
also contains an IMU unit. The specialty of this model is the precise time synchronization
of IMU and camera images. The ROS Wrapper launch files allow setting the base camera
parameters such as resolution and FPS rate. However, more advanced parameters as exposure
time control, color corrections, etc. are set via configuration file. The D435i camera firmware

1https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.

html
2https://github.com/IntelRealSense/realsense-ros
3https://www.intelrealsense.com/depth-camera-d435i/

https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://github.com/IntelRealSense/realsense-ros
https://www.intelrealsense.com/depth-camera-d435i/

12 Chapter 2. Hardware setup

Figure 2.1: Intel RealSense D435i camera

was updated to version 05.11.06.2504. The list of all supported combinations of resolutions
and frame rates for the infra camera module is in Table 2.1. All possible combinations are
available with command rs-enumerate-devices with plugged-in device.

Camera Resolution [px] 6 Hz 15 Hz 25 Hz 30 Hz 60 Hz 90 Hz

1280x800

1280x720

848x480

640x480

640x400

640x360

480x270

424x240

Table 2.1: List of supported resolution/frame rate combinations for RealSense D435i infra module

2.1.2 Tracking camera - T265

The only available model in this category is T265 camera5, shown in Figure 2.2. The
camera has a fisheye camera stereo pair and the IMU unit available. The device has a built-in
V-SLAM algorithm running directly on the device, which tracks the pose of the camera in
the world to provide odometry data. The camera does not allow to change any camera nor
IMU parameters due to its interconnection with V-SLAM. The camera runs with 848x480
resolution and 30 FPS frame rate. The resolution and frame rate are strictly set and cannot
be changed. The built-in V-SLAM was tested during the real experiments, but the enormous
drift was noticed during the UAV flight. The vibration from the UAV rotors probably results

4https://downloadcenter.intel.com/download/29255/Latest-Firmware-for-Intel-RealSense-D400-Product-Family?

product=128255
5https://www.intelrealsense.com/tracking-camera-t265/

https://downloadcenter.intel.com/download/29255/Latest-Firmware-for-Intel-RealSense-D400-Product-Family?product=128255
https://downloadcenter.intel.com/download/29255/Latest-Firmware-for-Intel-RealSense-D400-Product-Family?product=128255
https://www.intelrealsense.com/tracking-camera-t265/

2.1. Intel RealSense cameras 13

in high noise in acceleration measured by the IMU. It means that the built-in V-SLAM in
its current form cannot be used for controlling the UAV without hardware modifications that
would dampen the vibrations.

Figure 2.2: Intel RealSense T265 camera

2.1.3 IMU

Both D435i and T265 cameras have the Bosch BMI0556 IMU unit. This IMU should be
sufficient to track the UAV orientation and movement. However, the IMU precision is deeply
influenced during the UAV flight, by high-frequency vibrations coming from the UAV pro-
pellers. These high-frequency vibrations degrade the measurements from both accelerometer
and gyroscope, which in turn is detrimental to the VIO performance.

2.1.4 Camera installation

Intel provides a GitHub repository7 which contains librealsense library to work with
the camera on various supported platforms. Users can follow the instructions to install all
necessary packages for the system. All repositories were installed and tested on the Ubuntu
18.04, kernel version: 4.18.0, librealsense version 2.25.0.

Another necessary software for accessing the camera from ROS nodes is ROS wrapper
for Intel RealSense8. This ROS wrapper extends the support of librealsense library to the
ROS platform.

The built-in camera IMU produces two separate streams published at different rates.
One stream contains linear acceleration from an accelerometer, and the second consists of
angular velocity from the gyroscope. That is inconvenient for localization algorithms because
they require an IMU message containing both accelerometer and gyroscope data. The Intel

6https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi055.html
7https://github.com/IntelRealSense/librealsense
8https://github.com/IntelRealSense/realsense-ros

https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi055.html
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/realsense-ros

14 Chapter 2. Hardware setup

RealSense ROS wrapper has the functionality to merge IMU data into one message. It offers
two methods of merging. One is a unite method, which creates a new topic containing the
latest angular velocity and linear acceleration data. Here comes a problem with the different
sampling frequency of the sensors. The different sensor rates cause the replication of slower
sensor data in the merged message. This behavior is inappropriate because it seems that one
data source indicates change while the other not. Hence this method is not well usable. The
second method is linear interpolation. Every new IMU message consists of the interpolated
value from the previous value based on the timestamp. It ensures the values are not repeating
in the published message. While using the linear interpolation option, the linear acceleration
in the resting stage is exceeding the average value of standard gravity 9.81 m s−2, so it is also
inconvenient.

A custom message merging ROS package had to be created as part of this thesis using
message filters package, specifically Approximate Time synchronization policy that uses an
adaptive algorithm to match messages based on their timestamp9. It ensures that the values
of both sensors inside IMU are used just once (with the frequency of the slower one) or not
at all.

The ROS Wrapper officially does not support Ubuntu version 18.04 and ROS Melodic
used by the MRS system. However, no struggle with the newer version of ROS and Ubuntu
has been experienced.

Eventually, a problem with the value of angular velocity timestamp appeared. The
timestamp was twice the linear acceleration timestamp value. Because of that, it was impos-
sible to merge the messages into one with Approximate Time synchronization policy. To fix
the issue, the librealsense libraries had to be compiled on the PC (instead of installing the
prebuilt ones), with the specific version of Ubuntu kernel (4.15.0.47). Fortunately, this issue
has been fixed recently, so now the newer Ubuntu kernel and precompiled binaries could be
used.

Another problem was with the cycling timestamp of the accelerometer sensor. The
accelerometer timestamps were repeating in a 4 seconds cycle after the launch. Hence it could
not be merged with the gyroscope values due to the timestamp mismatch. This issue has been
discovered earlier by other developers, so ROS wrapper developers fixed it in the next release.

2.2 Calibration tools

In this section, the calibration tools for the camera and IMU are described.

2.2.1 Kalibr

The ROS wrapper for RealSense camera also publishes the CameraInfo message, which
contains the calibration parameters, but only the camera intrinsic parameters are filled out
from the camera. The Kalibr toolbox10 allows obtaining intrinsic and extrinsic parameters

9http://wiki.ros.org/message_filters/ApproximateTime
10https://github.com/ethz-asl/kalibr

http://wiki.ros.org/message_filters/ApproximateTime
https://github.com/ethz-asl/kalibr

2.2. Calibration tools 15

of the camera system. It also calibrates the camera-IMU system. While using our own ROS
package to merge the IMU sensor messages, the Kalibr calibration can detect whether there is
a time shift between the camera and IMU messages. Kalibr can obtain calibration parameters
for the following problems:

1. Multi-camera calibration - intrinsic and extrinsic calibration parameters of camera sys-
tems

2. Visual-inertial calibration - spatial and temporal calibration parameters of an IMU w.r.t.
a camera system

3. Rolling Shutter Camera calibration - full intrinsic calibration (projection, distortion and
shutter parameters) of rolling shutter cameras

Both of the cameras have a global shutter, so just the first two calibration processes are nec-
essary. Officially, Kalibr does not support Ubuntu version 18.04 and ROS Melodic. However,
it is possible to build and launch Kalibr on such a system. The tool does not require building
from the source, but it is the preferable way of installation. Calibration approaches used in
Kalibr are based on [34], [35] and [36].

Multi-camera calibration

The tool estimates the intrinsic and extrinsic calibrations for the multi-camera system.
The neighboring cameras must have overlapping fields of view. The tool supports calibra-
tion from the ROS bag with raw images. The process goes through the images and picks
images that contain the full grid of the calibration target. The tool allows combining various
projection and distortion models of cameras.

The calibration process consists of the following steps:

1. Collect images - Create a ROS bag containing the raw images of a calibration target.
The toolbox gives calibration targets to download and print. It is necessary to measure
the important sizes of the printed target and optionally adjust the target configuration
file.

2. Run the calibration - Execute the script with required parameters.

3. Output files - The calibration process outputs a PDF report with plots of calibration
results for documentation. It also contains a text file summary and calibration results
and transformation in the YAML format.

An example of calibration output plot for 640x360 resolution for D435i camera is shown in
Figure 2.3.

The April grid 6x6 calibration target11 was used for the calibration for both D435i and
T265 cameras. The Kalibr contains a calibration validator tool to validate the calibration
result.

11https://github.com/ethz-asl/kalibr/wiki/downloads

https://github.com/ethz-asl/kalibr/wiki/downloads

16 Chapter 2. Hardware setup

Figure 2.3: The Kalibr calibration output figure showing the reprojection error of D435i camera for 640x360
camera resolution.

Camera-IMU calibration

The Camera-IMU calibration tool estimates the spatial and temporal parameters of a
camera system concerning an intrinsically calibrated IMU. Again the ROS bag must contain
raw images and sensor data. Camera-IMU calibration process consists of the following steps
or prerequisites:

1. Requires IMU intrinsic parameters in YAML file before the calibration. Details regarding
obtaining these data are in Chapter 2.2.3.

2. Create a ROS bag containing raw images of the calibration target and IMU messages.
It is important to excite all the IMU axes with proper IMU movement to have precise
calibration.

3. Run the calibration with camera system parameters and IMU intrinsic parameters.

4. The results contain a PDF file with plots of calibration result, the calibration summary
in a text file, and a calibration output in YAML format based on input camera system
parameters. The S-MSCKF and SVO algorithms calibration files are based on the Kalibr
YAML output format.

The T265 camera IMU consists of an acceleration sensor sending data at 62.5 Hz fre-
quency and the gyroscope at 200 Hz frequency. The D453i camera has two frequency options
for both accelerometer and gyroscope. The IMU accelerometer can publish data at 62.5/250 Hz
and gyroscope at 200/400 Hz.

The T265 camera has only a single combination of camera resolution and IMU frequen-
cies, hence only the D435i camera has more variants. Multiple camera resolutions have been
calibrated to find a suitable resolution in further algorithm tests on the UAV. The 1280x720,
848x480, 640x480 and 640x360 camera resolutions were chosen for calibration. For the IMU,
the highest frequencies available were picked, specifically 250 Hz for accelerometer and 400
Hz for the gyroscope.

2.3. UAV platform 17

Intel guarantees that the D435i camera has synchronized IMU messages with the cap-
tured images, but the temporal calibration indicates that it is not exactly right. The higher
the resolution, the generally higher the time shift between camera images and IMU measure-
ments. The 1280x720 camera resolution has time shift equal to t=0.007 s. The 640x360 camera
resolution has time shift equal to t=0.003 s. These values are still small enough for 30 FPS
camera rates when the time difference between individual images is equal to t=0.03 s. Also,
the Kalibr result might be influenced by improper IMU movements during dataset capturing.
Still, the time shift seems to be small enough for the algorithms to work well.

2.2.2 Intel RealSense IMU Calibration tool

Intel provides its own calibration tool for the IMU12. This tool enables to calibrate
intrinsic parameters of the IMU, such as scale factor, bias, and off-axis terms.

The calibration tool requires to record a few seconds of the static position of the camera
in 6 different positions to excite all axes properly. The calibration results are available during
the calibration on the screen. The results can be written directly to the camera EEPROM.

2.2.3 IMU Noise Model

After the proper IMU calibration, it is necessary to obtain the IMU noise model for
the appropriate setting of both algorithms. For the Gazebo simulator and real experiment
purposes, the IMU noise model13 is characterized by noise density (white noise) and random
walk (bias instability). The noise density represents the fast variation of the sensor data with
a zero-mean Gaussian white noise with a standard deviation σ. The higher the σ, the more
noisy data are. The random walk represents the integration of the ”white noise” of the noise
strength σb.

The calibration tool14 is calculating the gyroscope and accelerometer and bias instability
parameter via analysis of the Allan variance method [37], [38]. For using the method, it is
necessary to record a ROS bag containing the IMU data of at least 2 hours length. The
camera (IMU) has to be in a stable position during the time of measurement. The tool uses
the recorded ROS bag to calculate the desired parameters.

2.3 UAV platform

The UAV platform is based on DJI F550 hexaframe equipped with E310 DJI motors15.
The low-level control is handled by PixHawk 4 FCU16. The PixHawk 4 has a built-in IMU with
accelerometers, gyroscopes, and magnetometers that are used for the UAV state estimation

12https://www.intelrealsense.com/wp-content/uploads/2019/07/Intel_RealSense_Depth_D435i_IMU_

Calibration.pdf
13https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model
14https://github.com/gaowenliang/imu_utils
15https://www.dji.com/cz/e310
16https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html

https://www.intelrealsense.com/wp-content/uploads/2019/07/Intel_RealSense_Depth_D435i_IMU_Calibration.pdf
https://www.intelrealsense.com/wp-content/uploads/2019/07/Intel_RealSense_Depth_D435i_IMU_Calibration.pdf
https://github.com/ethz-asl/kalibr/wiki/IMU-Noise-Model
https://github.com/gaowenliang/imu_utils
https://www.dji.com/cz/e310
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html

18 Chapter 2. Hardware setup

and the UAV attitude stabilization. The PixHawk is extended by a GPS module simplifying
the manual control of the UAV by GPS mode in the outdoor environment. The GPS module
can also be used in the feedback loop of the UAV control system. The main CPU onboard is
the Intel NUC Kit 8i7BEH computer17 with i7 processor available having four physical cores
and 8 threads thanks to hyperthreading option. It has a few connectivity options, namely
USB 3.0 ports, WiFi, and RJ-45 connector, to communicate with other onboard or offboard
units. Next, the altitude is estimated by fusion of laser rangefinder Garmin LIDAR-Lite v318,
barometer and accelerometer from FCU. This precise altitude estimation enables to manually
fly with the UAV in altitude mode, which is comfortable for the UAV pilot. Next, the UAV
is equipped with a RealSense D435i camera for several camera-related scenarios. The image
of the UAV platform used is shown in Figure 2.4.

Lastly, the UAV has an Real Time Kinematics (RTK) GPS receiver19 for 1 centimeter
precise position estimate. The RTK localization system consists of two RTK receivers. One
receiver, which is located on a fixed-location tripod serves as the base station, while the second
one is mounted on the UAV. The base station broadcasts its position along with the carrier
measurements for all visible satellites. The UAV uses this information to resolve the carrier
phase ambiguity and resolve the position relative to the base station. If the solution is exact,
the highest possible precision of 1 cm is accomplished. It is called RTK FIX mode. If the exact
solution cannot be achieved, the solution gives slightly worse precision but still better than
GPS. This mode is called RTK FLOAT.

Additionally, the UAV can be equipped with a LIDAR sensor, the Bluefox camera, or
different types of the gripper for specific scenarios.

RealSense D435i

RTK GPS Antenna

GPS module

RTK GPS BoardIntel NUC

PixHawk

Garmin Rangefinder

Figure 2.4: The UAV platform used in real experiments

17https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc8i7beh.html
18https://buy.garmin.com/en-US/US/p/557294
19https://www.tersus-gnss.com/product/bx305-oem-board

https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc8i7beh.html
https://buy.garmin.com/en-US/US/p/557294
https://www.tersus-gnss.com/product/bx305-oem-board

Chapter 3

Vision Algorithms

In this chapter, the analyzed VIO (VO) algorithms are described. Firstly, the filter-
based S-MSCKF algorithm. Next, the semi-direct VO algorithm called SVO, which combines
feature-based and direct methods with robust probabilistic depth estimation, including motion
priors. Lastly, the optimization-based VINS-Fusion algorithm is described supporting the
fusion of different sensor suites based on VINS-Mono VIO.

3.1 Stereo Multi-State Constraint Kalman Filter (S-MSCKF)

The S-MSCKF is a filter-based stereo VIO algorithm that uses the Multi-State Con-
straint Kalman Filter (MSCKF). The authors based the work on the state-of-art MSCKF
[39], [40] and [41] algorithm because of its accuracy and consistency.

The notation of the world (global) frame G is denoted as G(·). The authors have defined
the IMU frame to be set as the body frame, which is denoted as I. However, the algorithm
calibration file allows setting the transformation between the body frame and the IMU frame
arbitrarily. Transformation between the global frame G and the IMU (body) frame I is I

G(·).
The estimate of the x value is denoted as x̂.

The IMU state for the filter is defined as

xI = (IGq
T bTg

GvTI bTa
GpTI

I
Cq

T IpTC)T , (3.1)

where I
Gq is the rotation from the global frame to the IMU frame. The velocity and position

of the IMU frame in the global frame are represented as GvI and GpI . Vectors bg, ba are
the biases of the measured angular velocity and linear acceleration from the IMU. The I

Cq
represents the rotation between the camera frame and the IMU frame. The IpC is the position
of the camera frame in the global frame. Usage of actual IMU state might cause singularities
in calculated covariance matrices, due to the unit constraint on the quaternions. Hence the
error IMU state is used instead as

x̃I = (IGθ̃
T b̃Tg

GṽTI b̃Ta
Gp̃TI

I
C θ̃

T I p̃TC)T , (3.2)

20 Chapter 3. Vision Algorithms

where the standard additive error is used for position, velocity and biases (e.g. the standard
additive error in the estimate Gv̂I of a quantity GvI is defined as GṽI = GvI − Gv̂I), For
quaternions an error quaternion δq = q ⊗ q̂−1 is used, where ⊗ symbolizes the quaternion
multiplication. The error quaternion δq is related to the error state orientations as

δq ≈ (
1

2
G
I θ̃

T 1)T , (3.3)

where G
I θ̃ ∈ R3 describes the correspondence of the true and the estimated rotation. A total

of N camera states (i = 1..N) are considered together in the state vector, which is

x̃ = (x̃TI x̃TC1
... x̃TCN

)T , (3.4)

x̃Ci = (Ci
G θ̃

T Gp̃TCi
)T ,

where x̃Ci is the camera error state and x̃TI is the error IMU state from Equation (3.2).

The linearized continuous dynamics for the IMU error state is:

˙̃xI = F x̃I +GnI , (3.5)

where nTI = (nTg n
T
wg n

T
a n

T
wa)

T . The ng and na represent the Gaussian noise of the gyroscope
and accelerometer measurement. The nwg and nwa are the random walk rate of the gyroscope
and accelerometer measurement biases. The system matrices F , G are shown in [22].

The feature position in the world frame Gpj , where j = 1...L is the j-th feature from
total L features, is computed using the least square method as shown in [39] based on the
current pose estimate. The residual of the measurement can be approximated as

rji = zji − ẑ
j
i = Hj

Ci
x̃Ci +Hj

fi
Gp̃j + nji , (3.6)

where nji is the measurement noise. The zji is the stereo measurement of the j-th feature in

the i-th camera state. The Jacobian Hj
Ci

, Hj
fi

and stereo measurement zji are detailed in [22].
Stacking multiple observations of the same feature fj gives

rj = zj − ẑj = Hj
xx̃+Hj

f
Gp̃j + nj . (3.7)

The Gpj is computed using camera poses, hence the uncertainty of Gpj is correlated with
the camera poses in the state. To ensure the uncertainty does not affect the residual and the
update step of the EKF can be processed in a standard way, the residual is projected onto
null space V of Hj

f hence

rjo = V Trj = V TV j
x x̃+ V Tnj = Hj

x,ox̃+ njo. (3.8)

The filter model inherited the update mechanism from [39] with modification for real-
time execution. The authors have proposed to remove two camera states every other update
step. The two-camera states are chosen according to the relative motion between the second
latest camera state and its previous one. Either the second latest or the oldest camera state
is selected for removal. This procedure is done twice to remove two states. The latest camera
state is always kept due to new feature observations.

3.1. Stereo Multi-State Constraint Kalman Filter (S-MSCKF) 21

The FAST feature detector [42] processes the images and extracts the features from
the image. Existing features are tracked using the KLT optical flow algorithm [43]. There
are two types of outlier rejection procedures implemented. A 2-point RANSAC algorithm is
implemented to remove outliers in temporal tracking. To further remove outliers generated in
the feature tracking and stereo matching steps, a circular stereo matching algorithm similar
to [44].

The S-MSCKF algorithm was compared to the state-of-art methods as OKVIS [27],
ROVIO [23], and also VINS-mono algorithm, that was also included for comparison in Chapter
3.3. The VINS-mono algorithm includes a loop closure module which was disabled to compare
just odometry of different algorithms. Algorithms were compared on the EuRoC datasets [15]
in terms of Root Mean Square Error (RMSE) and the average CPU load, as shown in Figure
3.1.

Figure 3.1: RMSE and CPU comparision of OKVIS, ROVIO, VINS-Mono and S-MSCKF algorithm on EuRoC
dataset. Courtesy of [22]

Results show that filter-based (mono/stereo) methods are more efficient in terms of CPU
usage than optimization-based methods (OKVIS, VINS-Mono). OKVIS has higher CPU usage
than VINS-Mono mainly due to Harris corner detector [45] and BRISK descriptor [46] for
both temporal, and stereo matching and also the OKVIS backend runs at the fastest possible
rate, but VINS-Mono runs on 10 Hz fixed rate. The VINS-Mono rate is possible to set to a
higher rate. However, this is the default rate set by the authors.

The authors have also created their own fast flight dataset with top velocities of 5 m s−1,
10 m s−1, 15 m s−1 and 17.5 m s−1. The ROVIO algorithm was omitted in these datasets due to
a massive drift in the scale, resulting in low accuracy in comparison with other methods. The
S-MSCKF method has slightly worse RMSE than the rest of the algorithms, but the lowest
CPU load, despite the longer time spent on the image processing due to faster movements.
All details can be found in [22]. It showed that S-MCSKF achieves robustness with a modest
computational budget for aggressive movements, high velocity, and indoor/outdoor transition.

22 Chapter 3. Vision Algorithms

3.1.1 Implementation

The authors implemented and published S-MSCKF on GitHub1, provided a ROS pack-
age with installation and usage instructions. There are also configuration files available for
camera types used in the examples. Calibration files containing intrinsic and extrinsic camera
parameters plus transformation matrix between IMU and each camera. These parameters
were obtained with the Kalibr tool, as described in Chapter 2.2.1. The S-MSCKF uses a
similar format of the calibration file format as the output YAML file from the Kalibr.

The implementation consists of two ROS nodes. First is the image processor node,
which processes the images and publishes detected image features. The image processor node
allows setting the parameters to tune the image processing such as:

1. The number of columns and rows the image is divided into

2. The minimal and maximal number of features in every cell

3. The FAST feature detector parameters such as image pyramid levels, patch size, FAST
threshold, etc.

The second is the VIO node, which processes the IMU messages and tracked features in
consecutive images. The VIO node has several parameters to set, such as:

1. The maximum number of camera states to maintain

2. The keyframe selection thresholds according to rotation and translation change

3. The standard deviations of the IMU inputs and feature observations

4. The initial conditions of the MSCKF filter

The node publishes the position and velocity in the ROS Odometry message. Precise param-
eter settings, as well as extrinsic calibrations, are essential to initialize the filter properly.

To be able to compare the calculated output, the transformation of the odometry mes-
sage has to be applied. It was necessary to create a transformation publisher between the
local origin frame in which the ground truth is published, and the msckf origin frame where
the algorithm odometry is published since these two coordinate frames do not correspond.
The local origin frame is defined by GPS coordinates with the x-axis facing magnitude north,
while the msckf origin is defined by the camera pose at the start of the algorithm. Then the
odometry message itself has to be transformed by the transformation, so it is comparable
with the ground truth values.

1https://github.com/KumarRobotics/msckf_vio

https://github.com/KumarRobotics/msckf_vio

3.2. Semi-Direct Visual Odometry (SVO) 23

3.2 Semi-Direct Visual Odometry (SVO)

SVO [25] is a visual odometry algorithm that uses a direct method to track and trian-
gulate pixels while using feature-based methods for joint optimization of the structure from
motion (SfM). Using a robust probabilistic depth estimation algorithm enables us to track
pixels on weak corners and edges efficiently. The algorithm could be easily extended to mul-
tiple cameras, to include motion priors from motion sensors or using a very wide field of
view cameras. The version that is described here is the extended version of the previous work
of authors [47]. Additionally, the presented version includes the generalization for multiple-
camera systems, motion priors assumption, and edge features use. Because of the motion
priors coverage, the SVO is treated as a VIO algorithm.

The authors have designed a separated thread system containing Motion Estimation
thread and Mapping thread. The motion estimation thread task is to perform the semi-
direct approach to motion estimation, additional feature alignment to eliminate drift and
final refinement.

The camera C at time k provides an intensity image Ick. A 3D point ρ ∈ R3 is mapped
to the image coordinates u ∈ R2 through the camera projection model

u = π(ρ). (3.9)

The camera projection model is known from the calibration process as mentioned in Chapter
2.2.1. The 2D image point (pixel) u ∈ RCk with the inverse depth ρ > 0 can be back-projected
to the 3D point with

ρ = π−1
ρ (u), (3.10)

where RCk are pixels with known depth at time k in camera C. The () · () symbolizes the
scalar multiplication between two elements.

The authors proposed a sparse image alignment model based on the image to model
alignment, which estimates the incremental camera motion by minimizing the intensity dif-
ference (photometric error) of pixels observing the same 3D point.

To allow generalization for multiple cameras, a body frame B is introduced. This frame
is rigidly attached to camera frame C with known extrinsic calibration transformation. This
relations are described in Figure 3.2.

The goal is to estimate the body frame incremental motion Tk,k−1 that minimizes the
photometric error between the patches in the frames:

T ∗k,k−1 = arg min
Tk,k−1

∑
u∈R̄C

k−1

1

2
||rICu (Tk,k−1)||2∑

I
, (3.11)

where rICu is the photometric residual and it is defined by the intensity difference of pixels in
subsequent images Ick and Ick−1 observing the same 3D point ρu

rICu (Tk,k−1)
.
= Ick

(
π(TCBTk,k−1 ρu)

)
− Ick−1

(
π(TCB ρu)

)
. (3.12)

24 Chapter 3. Vision Algorithms

Figure 3.2: The change of the relative pose Tk,k−1 between the current and the previous frame implicitly moves
the position of the reprojected points u′i in the new image. Courtesy of [25].

The optimization in Equation (3.11) includes only those pixels, for which the backprojected
points are also visible in the Ick. The authors have proposed a sparse image alignment approach
that assumes known depth just for corners and features lying on intensity edges. To increase
the approach robustness, the small patch photometric cost aggregation was proposed with
the assumption of the same depth for the neighboring pixels. It is solved with a standard
iterative non-linear least-squares method, such as Levenberg-Marquardt.

Next, the authors proposed relaxing the geometric constraints given by the reprojection
of 3D points and perform 2D alignment of corresponding feature patches. However, this align-
ment generates a reprojection error between the projected 3D point and the aligned feature.
Therefore a bundle adjustment process has to be implemented to optimize 3D positions and
camera poses, minimizing the reprojection error. Predicted corner feature position u′, where

u′ = π
(
TCB Tkr TBC π−1

ρ (u)
)

(3.13)

has to be corrected by a correction δu∗ ∈ R2 with respect to the newest frame k minimizing
the photometric error, where

δu∗ = arg min
δu

∑
∆u∈P

1

2

∣∣∣∣∣∣Ick(u′ + δu+ ∆u)− ICr (u+A∆u)
∣∣∣∣∣∣2. (3.14)

where ∆u is the iterator variable calculating sum over patch P, r is the reference frame of
the first observation of the feature. Affine warping A is applied to the reference patch, which
is computed from the estimated Tkr between the reference frame r and current frame k. The
corrected feature position u′∗ is then

u′∗ = u′ + δu∗, (3.15)

Edge features are facing the so-called aperture problem. Hence the alignment freedom is
limited to the normal direction of the edge. Edge features are optimized with the scalar
correction δu∗ ∈ R in the direction of the edge normal n, giving equation

δu∗ = argmin
δu

∑
∆u∈P

1

2

∣∣∣∣∣∣Ick(u′ + δu · n+ ∆u)− ICr (u+A∆u)
∣∣∣∣∣∣2. (3.16)

3.2. Semi-Direct Visual Odometry (SVO) 25

Figure 3.3: Example of the described feature alignment strategies. Courtesy of [25].

To obtain feature position u′∗ in the newest frame, the predicted positon u′ from Equation
(3.13) is corrected with scalar correction δu∗ as

u′∗ = u′ + δu∗ · n. (3.17)

The example of alignment strategies is shown in Figure 3.3.

Finally, the refining of the camera poses and landmark positions X = {Tkw,ρi} has to
be performed by minimizing the squared sum of reprojection errors

X ∗ = argmin
X

∑
k∈K

∑
i∈LCk

1

2
||u′∗i − π(TCBTkwρi)||2 +

∑
k∈K

∑
i∈LEk

1

2
||nu′∗i − π(TCBTkwρi)||2,

(3.18)

where K is the set of all keyframes in the map, LCk is the set of all landmarks corresponding
to corner features, LEk is the set of all landmarks corresponding to edge features observed in
the k-th camera frame.

The rigid transformation Tkw represents the world frame orientation and position con-
cerning the k-th camera frame. A point expressed in the world frame can be transformed to
the k-th camera frame as

ρk = Tkwρw (3.19)

Previously, the depth was assumed to be known. Now the depth estimation process is de-
scribed. Single-pixel depth is estimated from multiple observations utilizing a recursive Bayesian
depth filter. The depth filter is modeled with a two-dimensional distribution. The illustration
of depth estimation is shown in Figure 3.4.

The first dimension is the inverse depth ρ, and the second dimension is the inlier prob-
ability of γ. Hence a measurement ρ̃ki is modeled with Gaussian distribution around the true
inverse depth ρi and Uniform distribution for outlier measurement that arises from interval
[ρmini , ρmaxi]mixture model distribution

p(ρ̃ki |ρi, γi) = γiN (ρ̃ki |ρi, τ2
i) + (1− γi)U(ρ̃ki |ρmini , ρmaxi). (3.20)

The described algorithm has been proposed only for the monocular camera. However,
due to the generalization of the motion estimation algorithm, it can be extended to the multi-
camera system. Then, the cost function contains additional summation for all c ∈ C for all

26 Chapter 3. Vision Algorithms

Figure 3.4: Probabilistic depth estimate ρ̂i for feature i in the reference frame r. The depth estimate ρ̂i is
updated with the triangulated depth ρ̃ki computed from the point u′i of highest correlation with the reference
patch. Courtesy of [25]

Figure 3.5: Example of interpretation of stereo camera system in SVO. The TBC1 and TBC2 are known from
extrinsic calibration as described in Chapter 2.2.1. Courtesy of [25].

used cameras.

T ∗k,k−1 = arg min
Tk,k−1

∑
c∈C

∑
u∈R̄C

k−1

1

2
||rICu (Tk,k−1)||2∑

I
(3.21)

The same modification in required for bundle adjustment step in Equation (3.18) to sum up
the reprojection errors from all cameras. The example of stereo camera system interpretation
in SVO is shown in Figure 3.5.

Next, the motion priors are added to the sparse image alignment process resulting in
the following cost:

T ∗k,k−1 = arg min
Tk,k−1

∑
c∈C

∑
u∈R̄C

k−1

1

2
||rICu (Tk,k−1)||2∑

I

+
1

2
||pk,k−1 − p̃k,k−1||2∑

p

+
1

2
|| log(R̃Tk,k−1Rk,k−1)||2∑

R
,

(3.22)

where p̃k,k−1 is the relative translation prior, R̃Tk,k−1 is the relative rotation prior. The co-
variances

∑
p and

∑
R are set according to uncertainty of the motion prior and the variables

(pk,k−1, Rk,k−1)
.
= Tk,k−1 are the current estimate of the relative position and orientation.

3.2. Semi-Direct Visual Odometry (SVO) 27

The sparse approach does not reach the same convergence radius in terms of distance to the
reference image. Thus SVO uses sparse image alignment only to align the current image to
the previous image, not to the last keyframe.

The SVO was compared with DSO, ORB-SLAM, and LSD-SLAM. Due to the complex-
ity of the SVO, it has been tested in various configurations (monocular/stereo, with FAST
corners only, with edgelets, with motion priors, etc.) against the other algorithms. SVO ex-
tracts features just for selected keyframes. Hence it prospers from high frame-rate cameras
due to not fixed cost per frame because the proposed sparse image alignment step is initialized
closer to the final solution resulting in faster convergence. Then higher frame-rate reduces the
computational cost per frame. SVO is the most robust while running with high frame-rate (40
to 80 frames per second). Another benefit of SVO is the direct start of optimization, allowing
the integration of multiple camera measurements as well as motion priors.

3.2.1 Implementation

The algorithm binaries are available upon request on the developer’s website as men-
tioned in their GitHub account2. Due to the binary version, a specific installation process in
a separate ROS workspace is required. Authors provided example calibration files for EuRoC
datasets [15] as well as parameter files to set up the SVO algorithm. Kalibr tool, described
in Chapter 2.2.1, can provide the required calibration files. The authors prepared a script to
convert the Kalibr calibration output to the SVO format.

The SVO parameter file allows adjusting the algorithm configuration. SVO was origi-
nally only a monocular VO. However, the authors have implemented a stereo camera option
and also included IMU as motion priors. The parameters have to be set accordingly to the
used camera resolution and model, IMU, and computational power available. The main con-
figurable parameters are:

1. The sensor suite setup - Mono or stereo camera, the IMU used or not

2. Feature related - grid size, number of features, keyframe selection criterions, pose opti-
mization, etc.

3. IMU related - Gyroscope prior in pose optimization and image alignment, velocity as-
sumption in translation

The estimated position is published in a ROS PoseWithCovariance message as a point,
instead of Odometry message. The SVO publishes the estimated position of IMU and stereo
cameras in individual frames. The frame can be attached to the local origin frame, which is
used for the drone navigation using a static transform built from the ground truth pose of
the start of the algorithm. Then the position estimated by the algorithm can be compared
with the ground truth value.

2https://github.com/uzh-rpg/rpg_svo_example

https://github.com/uzh-rpg/rpg_svo_example

28 Chapter 3. Vision Algorithms

3.3 VINS-Mono

VINS-Mono [48] is a monocular visual-inertial state estimator using pre-integrated IMU
factors. The authors propose a tightly coupled non-linear optimization-based method to obtain
highly accurate visual-inertial odometry by fusing pre-integrated IMU measurements and
feature observations. Furthermore, the authors presented the following features:

1. The robust initialization procedure enables to bootstrap the system from unknown
initial states, including the online camera-IMU extrinsic calibration module.

2. Loop detection module with relocalization and four degrees-of-freedom (DoF) global
pose graph optimization to enforce global consistency.

3. Pose graph reuse enables to save, load, and merge multiple local pose graphs.

The first step of the VINS-Mono algorithm is measurement preprocessing, in which
the images and IMU measurements are processed. Corner features are tracked in successive
frames with KLT sparse optical flow algorithm [43], and new features are detected in the
latest frame with [49]. Outlier rejection is performed using the RANSAC algorithm.

Keyframe selection has two criteria. The first one is the average parallax caused by
translation from the previous keyframe. The parallax can also be caused by rotation. However,
the features cannot be triangulated in the rotation-only motion. To prevent the influence of
rotation on the parallax calculation, a short-term gyroscope measurement integration is used
to compensate the rotation. This rotation is compensated just for keyframe selection, and it
is not used in the VIO calculation process itself. If the average parallax of tracked features
between the current frame and the latest keyframe is above a certain threshold, it is considered
as a new keyframe. Another criterion is tracking quality. If the number of tracked features
goes below a certain threshold, this frame is treated as a new keyframe. This criterion is
present to avoid complete loss of feature tracked.

The authors have defined the notations for the world frame as (·)w, where gravity is
aligned with the z-axis of the world frame. The body frame is denoted as (·)b, which is also the
IMU frame. The camera frame is denoted as (·)c. The transformation from the body frame to
the world frame is denoted as (·)wb . The noisy measurements or satisfied quantity estimation

is denoted as (̂·).

The IMU measurements are pre-integrated between two consecutive frames. At first,
the IMU noise and bias have to be handled. The IMU measurements, which are measured in
the body frame, combine the gravity force with the platform dynamics and are affected by
the acceleration bias ba, the gyroscope bias bw and the additive noise na. Accelerometer â
and gyroscope ω̂ raw measurements are given by

ât = at + bat +Rt
wg

w + na, (3.23)

ω̂ = ωt + bwt + nw, (3.24)

assuming the additive noise in acceleration and gyroscope measurements is Gaussian white
noise, na ∼ N (0,σ2

a), nw ∼ N (0,σ2
w). The acceleration and the gyroscope biases are

3.3. VINS-Mono 29

Figure 3.6: Illustration of the visual-inertial alignment for VINS-Mono. Courtesy of [48].

modeled as random walk, whose derivatives are Gaussian white noise, nba ∼ N (0,σ2
ba

),
nbw ∼ N (0,σ2

bw
)

ḃat = nba (3.25)

ḃwt = nbw (3.26)

For two time consecutive frames bk and bk+1, there exist several inertial measurements in
time interval [tk, tk+1]. Given the bias estimate, the measurements are integrated into the
local frame bk. The integration process can be found in [48].

VINS-Mono requires a precise initial guess, which is obtained by loosely aligning IMU
pre-integration with the vision-only structure. The procedure is illustrated in Figure 3.6,
starting with visual structure from motion (SfM) that estimates a graph of camera poses and
feature positions. Computational complexity is bounded by keeping a fixed number of frames
in the sliding window. Next, feature correspondence between the latest frame and all previous
frames in the sliding window is checked. If the stable amount of features (more than 30) can be
found and there is sufficient parallax (more than 20 pixels) between the latest frame and any
other frame in the sliding window, it recovers the relative rotation and up-to-scale translation
between these two frames using five-point algorithm [50]. Then arbitrarily chooses the scale
and triangulates all observed features. Based on these points, a perspective n-point (PnP)
method [51] is applied to estimate the poses of all other frames in the window, and a global
bundle adjustment is applied to minimize the total reprojection error of all observed features.
While there is not a piece of knowledge about the world frame yet, the first camera frame
is marked as a reference for SfM. Hence all frame poses (p̄c0ck , q

c0
ck

) and feature positions are
represented with respect to the first camera frame c0. Knowing extrinsic calibration between
camera and IMU (pbc, q

b
c), the camera frame can be expressed in the IMU (body) frame

qc0bk = qc0ck ⊗ (qbc)
−1, (3.27)

sp̄c0bk = sp̄c0ck −R
c0
bk
pbc, (3.28)

where s is the unknown scaling parameter. The ⊗ symbol denotes quaternion multiplication.
The next step is to align the IMU pre-integration with the up-to-scale visual structure. VINS
linearizes the IMU pre-integration concerning gyroscope bias minimizing appropriate cost
function resulting in the initial calibration of gyroscope bias for VIO. Next, other essential
states have to be initialized, specifically the velocity, the gravity vector, and the metric scale.

XI =
[
vb0b0 ,v

b1
b1
, ...,vbnbn , g

c0 , s
]
, (3.29)

30 Chapter 3. Vision Algorithms

where vbkbk is the body frame velocity for the kth image, gc0 is the gravity vector in the c0

frame and s is the scaling parameter scaling SfM to metric units. The XI values are found
by minimizing an appropriate cost function. The gravity vector g can be further refined, con-
straining the magnitude. The magnitude is more or less known, which decreases the problem
dimension to 2-DoF. Thus the gravity vector is perturbed with two variables on its tangential
space. The gravity vector g is perturbed by δg as follows

g(
−→
ĝ + δg), δg = w1b1 + w2b2, (3.30)

where g is the known magnitude of the gravity,
−→
ĝ is a unit vector of the gravity direction

and b1, b2 are two orthogonal basis spanning the tangential plane. The g(
−→
ĝ + δg) is then

substituted into the XI and solved with other state variables until it converges. Gravity
refinement gives the rotation qwc0 between the world frame and the camera frame c0 by rotating
the gravity to the z-axis. All variables from body frame b and camera frame c0 are rotated to
the world frame w, body frame velocities are also rotated to the world frame, and translation
components from the visual SfM are scaled to metric units. Detailed information regarding
the cost functions and equation can be found in the [48].

The tightly coupled VIO is then formulated with the full state vector in the sliding
window as

X = [x0,x1, ...xn,x
b
c, λ0, λ1, ...λm], (3.31)

xk = [pwbk ,v
w
bk
, qwbk , ba, bg], k ∈ [0, n],

xbc = [pbc, q
b
c],

where xk is IMU state at the time when the k-th image is captured. Position pwbk , velocity
vwbk and orientation qwbk of the IMU are expressed in the world frame and acceleration bias ba
and gyroscope bias bg are expressed in the body frame, which is the IMU frame. The total
number of keyframes is denoted by n, and m is the total number of features in the sliding
window. The inverse distance of the l-th feature from its first observation is marked as λl.
The authors use a visual-inertial bundle adjustment formulation and minimize the sum of the
prior and the Mahalanobis form of all measurement residuals to obtain a maximum posterior
estimation

min
X

{
||rp −HpX||2 +

∑
k∈B
||rB(ẑbkbk+1

,X)||2
P

bk
bk+1

+
∑

(l,j)∈C

ρ(||rC(ẑ
cj
l ,X)||2

P
cj
l

)

}
, (3.32)

where rB(ẑbkbk+1
,X) and rC(ẑ

cj
l ,X) are residuals for IMU and visual measurements, B is the

set of all IMU measurements, C is the set of features that have been spotted at least twice in
the sliding window and {ep,Hp} is the prior information from prior knowledge and marginal-
ization. The Huber norm ρ [52] is defined as

ρ(s) =

{
s s ≤ 1

2
√
s− 1 s > 1.

(3.33)

This non-linear optimization problem is solved with Ceres solver [53]. The details of IMU and
visual measurement residuals minimization can be found in [48].

3.3. VINS-Mono 31

Figure 3.7: Illustration of the marginalization process for VINS-Mono. Courtesy of [48].

The optimization complexity is bounded by marginalization. The IMU states xk and
features λl are marginalized out from the sliding window, and measurements corresponding
to marginalized states are converted into a prior. The new prior based on all marginalized
measurements related to the removed state is added to the existing one. If the second latest
frame is a keyframe, it stays in the window, and the oldest state is marginalized out with
its corresponding measurements. Otherwise, if the second latest frame is a nonkeyframe, it
discards visual measurements and keeps IMU measurements that connect to the nonkeyframe,
and the pre-integration process continues to the next frame. The marginalization scheme
aims to keep spatially separated keyframes in the window. This process ensures sufficient
parallax for feature triangulation and maximizes the probability of maintaining accelerometer
measurements with significant excitation. The marginalization process is shown in Figure 3.7

Bounded complexity also brings accumulating drift to the system. An elimination pro-
cess has to be proposed. Authors came with tightly coupled relocalization that is smoothly
integrated with the monocular VIO. Relocalization starts with a loop detection module, iden-
tifying already visited places. If there exists a candidate for loop closure, feature-level connec-
tions are established. These connections are tightly integrated into the VIO module, resulting
in a driftless state estimate with minimal computation power.

The authors use the DBoW2 [54] bag-of-words place recognition approach for loop de-
tection. The corner feature detector [49] is used to detect 500 more features for loop detection.
The features are described by the BRIEF descriptor [55]. Resulting BRIEF descriptions are
used as the visual word to query the visual database DBoW2. DBoW2 returns loop-closure
candidates after temporal and geometrical consistency checks. All BRIEF descriptors are kept
for retrieving features, and raw images are discarded to reduce memory consumption.

The relocalization process has to be finalized with the alignment of the current sliding
window to the past poses. The nonlinear cost function from Equation (3.32) is modified by
adding the following term ∑

(l,v)∈L

ρ(||rC(ẑvl ,X , q̂wv , p̂wv)||2P cv
l

), (3.34)

where L is the set of observations of retrieved features in the loop-closure frames, (l, v) is
l-th feature observed in the loop-closure frame v. Despite the cost function extension, the

32 Chapter 3. Vision Algorithms

dimension of the states to be solved is the same, because loop-closure frames poses are treated
as constants.

Figure 3.8: Diagram illustrates the relocalization (a) and pose graph optimization (b) process. While the VIO
is estimating the pose, the loop detection (red line) occurs between the current keyframe (blue) and past
keyframe(green). Thanks to feature-level correspondences, the relocalization process handles the loop-closure
constraints from several past keyframes. The keyframe is added to pose-graph after marginalization. If the
loop detection finds the loop-closure candidate from the past keyframes, the 4-DoF relative transformation is
also added to the pose graph. Courtesy of [48].

The relocalization ensures the finding of previously visited spots. However, the relocal-
ized image frames have to be optimized to ensure global consistency and eliminate the drift.
Thanks to the observability of the horizontal plane (roll and pitch angle) in the system by the
gravity vectors, the problem reduces to 4-DoF. The keyframes are added to the pose graph
as vertices, and they are connected to other vertexes (keyframes) by either a sequential edge
or a loop edge. Sequential edge is drawn from a keyframe to several of its previous keyframes,
as shown in Figure 3.9. It represents the relative transformation between two keyframes.

The edge is described by

p̂iij = R̂w
i
−1(p̂wj − p̂wi), (3.35)

ψ̂ij = ψ̂j − ψ̂i,

3.3. VINS-Mono 33

Figure 3.9: Illustration of the pose graph for VINS-Mono. Courtesy of [48].

where i is the current keyframe and j is one of the previous keyframes, p̂iij is the relative

position and ψ̂ij is the yaw angle. The R̂w
i
−1 denotes the rotation between the world frame

w and the ith keyframe The loop edge is composed of the same components as shown in
Equation (3.35). The values are obtained from relocalization results.

The whole graph of sequential edges and loop edges is optimized by minimizing the
following cost function:

min
p,ψ

{ ∑
(i,j)∈S

||ri,j ||2 +
∑

(i,j)∈L

ρ(||ri,j ||2)

}
, (3.36)

where S is the set of all sequential edges, L is the set of all loop-closure edges. The Huber
norm ρ is used to reduce the possible wrong loop detections further. The residual ri,j is
shown in [48]. To distribute the load and speed up the computing, the VIO and pose graph
optimization module run concurrently in separate threads. The illustration of marginalization
together with pose graph optimization is shown in Figure 3.8.

The authors also proposed a pose graph merging method. It allows us to merge pose
graphs from different launch instances with the loop connections. Pose graph can be saved
into a file with the following structure for i-th keyframe:

[i, p̂wi , q̂
w
i , v, p̂

i
iv , ψ̂iv, D(u, v, des)], (3.37)

where p̂wi , q̂
w
i are position and orientation, respectively, of the i-th frame. If the frame has a

loop-closure frame, the v is the loop-closure frame index. The relative position and yaw angle
between the i-th and v-th frame are denoted as p̂iiv , ψ̂iv. The feature set, where every feature
contains the 2D location, and its BRIEF descriptor is expressed as D(u, v, des).

The VINS-Mono performance has been tested against the state-of-the-art OKVIS [27]
algorithm on EuRoC datasets [15]. The authors used images from the left camera for the
VINS. The comparison was made for both VINS-Mono with relocalization and loop closure
as well as VINS-Mono without these enhancements. The full VINS-Mono outperformed the
OKVIS in most of the experiments. The VINS-Mono without the relocalization and loop
closure performed in most of the tests slightly better than OKVIS, but worse than full VINS-
Mono.

Another test was performed to demonstrate the map merging feature. The authors used
all of the EuRoC datasets one by one. New sequences were merged onto the previous map,

34 Chapter 3. Vision Algorithms

Figure 3.10: Indoor experiment comparison with OKVIS. The (a) figure is output from OKVIS, where noticable
drift occurs especially during the circle movements. The (b) figure shows the VINS-Mono output with loop
closure detection (red lines) showing successfully elimination of the drift. Courtesy of [48].

which was growing in size with each new dataset. The whole trajectory was compared to the
ground truth resulting in ATE of 0.21 m.

At first, real-world experiments were performed by walking with the sensor suite indoors.
Again, the results were compared against OKVIS as shown in Figure 3.10.

The results show that VIO drifts significantly in all axes (x, y, z) and yaw angle. Thanks
to relocalization and loop-closure, VINS efficiently eliminates these drifts. The second experi-
ment was held outside with walking again around the university (HKUST) campus. The total
path length is 5.62 km. The estimated trajectory was projected to Google maps showing an
almost drift-free trajectory in this long-duration test. Lastly, VINS was tested in the feedback
control of an aerial robot showing the applicability of the algorithm. In this experiment, the
loop closure module was switched off. Total trajectory length was 61.97 m. The final drift in
every axis was [0.08, 0.09, 0.13]m resulting in 0.29 % positional drift.

The originally posted VINS-Mono algorithm was described. It is available on GitHub3.
Additionally, this GitHub version contains online temporal calibration between the camera
and IMU [56].

Most of the VIO algorithms assume precise temporal calibration between the camera
and IMU. However, most of the low-cost devices or self-assembled devices violate this assump-
tion. In real systems, the camera and IMU typically suffer from triggering and transmission
delays resulting in temporal time offset among samples. This temporal offset is usually an
unknown constant value and dramatically influences the performance of proper data fusion.
Sometimes, due to different clocks in the sensors, the time offset might be evolving in time.
Those kinds of sensors are inappropriate for fusion. Several papers have been proposed to
estimate the time offset as [57], [58] or Kalibr. In this thesis, Kalibr is used for the estimation
of camera intrinsic and extrinsic parameters, which is detailed in Chapter 2.2.1. Kalibr also
provides a precise estimation of the time offset between camera and IMU. However, Kalibr
runs offline on images of specific planar pattern with readily determined features (such as a
chessboard). The authors define a constant unknown time offset td as

tIMU = tcam + td. (3.38)

3https://github.com/HKUST-Aerial-Robotics/VINS-Mono

https://github.com/HKUST-Aerial-Robotics/VINS-Mono

3.3. VINS-Mono 35

The time offset td defines the time value that should be added to the camera timestamp so
that the camera and IMU streams become temporarily synchronized as shown in Figure 3.11.
The algorithm shifts observations of features in the timeline instead of the whole camera
frames or IMU sequence.

Figure 3.11: An illustration of temporal misalignment between camera and IMU streams. The generated
timestamp is not equal to the actual asmpling time due to triggering delay, transmission delay resulting in a
temporal misalignment. Courtesy of [56].

The authors modified the classical (re)projection error approach with a new variable, the
time offset. The features are parametrized, usually in two ways. The first is the parametriza-
tion of a feature as its 3D position in the global frame, and the second is the parametrization
of a feature as depth or inverse depth to a specific image frame. The authors formulated the
new projection error including the td as

ekl = zkl (td)− π(RwT

ck
(Pl − pwck)), (3.39)

zkl (td) =
[
ukl vkl

]T
+ tdV

k
l , (3.40)

where Pl = [xl, yl, zl]
T is the feature parametrized as 3D position, zkl is the observation of

feature l in frame k, (Rw
ck
,pwck) is the camera pose transforming feature Pl from global frame to

local camera frame, π(.) is the camera projection model, V k
l is the speed of the feature on the

image plane, td is the unknown constant time offset. The formulation of the new reprojection
error including td is

ejl = zjl (td)− π(RwT

cj (Rw
ciλi

[
zil (td)

1

]
+ pwci − p

w
cj)), (3.41)

zil =
[
uil vil

]T
+ tdV

i
l , z

j
l =

[
ujl vjl

]T
+ tdV

j
l , (3.42)

where λi is a depth in the image i.

The state variables are augmented with a time offset, which is defined as:

X = [x0,x1, ...xn,P0,P1, ...Pl, td], (3.43)

xk = [pwk ,v
w
k ,R

w
k , ba, bg], k ∈ [0, n], (3.44)

where the k-th IMU state contains the position pwk , velocity vwk , orientation Rw
k in the global

frame and IMU bias ba, bg in the local body frame. Either 3D position or depth parametriza-
tion parametrize the feature Pl.

36 Chapter 3. Vision Algorithms

The temporal calibration problem is then formulated in one cost function containing
IMU propagation factor, reprojection error, prior factor, and the vision factor as follows:

min
X

{
||ep −HpX||2 +

∑
k∈B
||eB(zkk+1,X)||2

P k
k+1

+
∑

(l,j)∈C

||eC(zjl ,X)||2
P j

l

}
, (3.45)

where eB(zkk+1,X) is the error term from IMU pre-integration, B is the set of all IMU mea-

surements, eC(z
j
l ,X) is the proposed vision factor, C is the set ot features which have been

detected at least twice in the image frame, {ep,Hp} is the prior information from prior knowl-
edge and marginalization. Marginalization is applied to bound the computational complexity.
The marginalized out states are converted into prior. The non-linear cost function is optimized
using Gauss-Newton methods.

The temporal calibration process was integrated into the VINS-Mono code. The authors
compared the VINS-Mono RMSE without the time offset calibration and with it showing the
noticeable difference when the time offset is present, as shown in Figure 3.12. It depicts that
time offset influences odometry precision.

Figure 3.12: The comparison of original VINS-Mono and the VINS-Mono with temporal alignment integrated.
The x-axis shows the chosen time offsets and the y-axis the RMSE. Courtesy of [56].

Next, they compared VINS-Mono with the time offset calibration against the OKVIS
algorithm on EuRoC datasets. However, EuRoC datasets are perfectly time-synchronized.
Hence authors purposely shifted the timestamp of the dataset IMU of 5 ms and 30 ms for
both algorithms. VINS-Mono with the temporal calibration has stable RMSE at both time
shifts, but OKVIS RMSE is increasing with a higher time offset.

3.3.1 Implementation

On January 2019, the authors have released an improved version of VINS-Mono called
VINS-Fusion [26]. This version comes with improved functionality. It brings the possibility
to choose from different sensor suites (stereo camera/monocular camera, using IMU or not)
and to swap them if necessary easily. According to the used suite, the algorithm fuses the
appropriate sensors. Despite these changes, the system still uses the global pose graph op-
timization, relocalization as well as loop closure. Additionally, authors have also provided

3.3. VINS-Mono 37

global data fusion [59]. It assumes local accuracy of VIO and allows to fuse data from other
sensors such as GPS, barometer, etc. to achieve a global scale driftless precision.

Authors have published their code as open-source4 along with example calibration and
configurations for various sensor suites. Calibrations are provided for EuRoC [15] suite, KITTI
dataset [60] suite and even Realsense D435i model. The implementation also supports omnidi-
rectional or fisheye cameras, which is convenient for monocular setup thanks to the fact that
large FoV prevents losing tracked features during significant inter-frame motion. The code
contains a calibration utility to obtain the intrinsic and extrinsic calibration for all supported
models. However, the Kalibr calibration outputs, detailed in Chapter 2.2.1, were used for the
evaluation of the algorithm. The algorithm publishes the message in ROS Odometry format.
VINS-Fusion algorithm can be tuned for following parameters

1. The feature tracking parameters such as the number of features, the minimal distance
between features and RANSAC threshold and optimization parameters for Ceres solver
[53] as max time, max iteration and keyframe parallax threshold

2. On/Off online temporal calibration of the time offset between IMU and camera and
on/off the online camera-IMU extrinsic calibration

4https://github.com/HKUST-Aerial-Robotics/VINS-Fusion

https://github.com/HKUST-Aerial-Robotics/VINS-Fusion

38 Chapter 3. Vision Algorithms

Chapter 4

Practical evaluation

Practical experiments and comparison of VIO algorithms presented in this chapter are
one of the key contributions of this work. Used evaluation metrics, as well as testing sce-
narios, are described. The algorithms were firstly tested in the Gazebo simulator to find
well-performing configurations of the algorithms, and to solve any potential issues since ex-
periments with actual hardware are much more demanding in terms of human and time
resources. After testing the possible variants in the simulator, the tested were performed also
on the real UAV platform. Let us first introduce the evaluation metrics in this thesis and also
describe the testing scenarios.

4.1 Evaluation metrics

A critical aspect when assessing the performance of any localization technique is eval-
uating the drift, i.e., the deviation of estimated position from ground truth, over a period of
time. The drift can be divided into translation and rotation components. However, the transla-
tion error comparison is sufficient because the rotation error is propagated into the translation
error while moving. For the altitude, the current MRS system uses the rangefinder-barometer
linear Kalman fusion to obtain the UAV altitude. The current UAV altitude estimation is
sufficient. Hence the z-component of the position estimated by the VIO algorithm is not used
for the control of the UAV. The following experiments focus primarily on the evaluation of
lateral error, i.e., the x and y components of the UAV position.

The ATE (Absolute Trajectory Error)[61] metric is used as the primary evaluation
metric. ATE compares the whole trajectory with the reference ground truth one. Thus it
covers both the translation and rotation error. The evaluation requires precise ground truth
values. In the simulation environment, the GPS is used, which is the exact UAV position with
no error. Hence the comparison is exact. In real flights, the RTK GPS is used. More details
regarding the real deployment and RTK GPS are in Chapter 4.8. The VIO odometry poses in
time are defined as a series of points P1...Pn ∈ SE(3). Similarly, the ground truth poses are
defined as points Q1...Qn ∈ SE(3). Since VIO odometry and RTK are usually in the different
inertial systems, the trajectories must be aligned first. The Horn method [62] is used to finds

40 Chapter 4. Practical evaluation

the rigid-body transformation S. The transformation S is used to align the VIO trajectory
Pi to the ground truth trajectory Qi giving absolute trajectory error Fi at time step i as

Fi := Q−1
i SPi. (4.1)

Then the RMSE error is given as

RMSE(F1:n) :=

√√√√(1

n

n∑
i=1

||trans(Fi)||2
)
, (4.2)

where trans symbolizes the translation error between same time indexes between the ground
truth and the VIO poses. The result of Equation (4.2) is used if ATE is calculated. In this
thesis, the ATE is always expressed in meters. The components of ATE calculations can be
showed in Figure 4.1. The global trajectory consistency metric has been shown, but the VIO

0 5 10 15 20
x [m]

0

5

10

15

20

y
[m

]

Aligned VIO estimation to the ground truth

ground truth
VIO estimation
difference

0 5 10 15 20
x [m]

0

5

10

15

20

y
[m

]

Aligned VIO estimation to the ground truth

ground truth
VIO estimation
difference

Figure 4.1: Figure shows the difference between aligned estimated odometry and the ground truth. Every
red line represents the distance difference between the same time samples. The differences are then used in
Equation (4.2).

algorithms might have a local drift in the set of IMU and camera measurements. This type of
error is reflected in the relative pose error (RPE). The RPE takes two samples of the ground
truth trajectory in the interval ∆ and compares it with the same time samples from VIO
trajectory. The error is calculated as

Ei :=
(
Q−1
i Qi+∆

)−1(
P−1
i Pi+∆

)
. (4.3)

Hence the total amount of sequences to compare are equal to m = n−∆ and again a RMSE
is calculated over errors of all intervals as

RMSE(E1:n,∆) :=

√√√√(1

m

m∑
i=1

||trans(Ei)||2
)
. (4.4)

4.2. Trajectory planning 41

In this thesis, the RPE is always expressed in meters. The authors have implemented several
types of the interval ∆. The ∆ can be specified as the length in meters, as time duration
in seconds, or as the number of frames (odometry messages). If not specified differently, this
thesis uses the ∆ as time in seconds. In such a way, the outcome is the root mean squared
drift within one second. Another approach might be the translation error for every frame
captured or the translation error within one meter of the ground truth. These variants give
several possibilities on how to compare the VIO algorithms. The result of Equation (4.4) with
∆ = 1 s is used for RPE is caculations in this thesis. An example of translation error is shown
in Figure 4.2.

0 20 40 60 80 100 120
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

tra
ns

la
tio

na
l e

rro
r [

m
]

Translation error between the estimation and the ground truth trajectory

(a)

0 5 10 15 20
x [m]

0

5

10

15

20

y
[m

]

Original VIO estimation and the ground truth trajectory

ground truth
VIO estimation

(b)

Figure 4.2: The figure (a) shows the translation error between the not aligned trajectories (b) used for RPE
calculations. The trajectory error is calculated from the measured initially trajectories. The interval ∆ between
for RPE calculations is set to 1 second.

It is worth mentioning that both ATE and RPE are highly correlated, but each of them
measures a different kind of error. Thus both of them are used for evaluation to highlight
differences between the tested algorithms.

4.2 Trajectory planning

As mentioned in Chapter 4.6, the VIO algorithms are susceptible to fast movements
and rapid changes in illumination, motion blur, etc. However, the primary purpose of this part
is to improve the planned trajectory to suit the VIO more. Hence simple square trajectory
planner was implemented assuming constant velocity along the trajectory. The UAV can have
a different rotation in the yaw axis during the flight.

1. Forward orientation - The UAV can always face forward in the direction of the flight.

2. Constant orientation - The UAV always faces constant direction during the flight.

3. Center orientation - The UAV always faces in the center of the trajectory shape, specif-
ically square. Nevertheless, this orientation is infeasible in another situation where the
center of the flown trajectory is not easy to identify, or even the trajectory is not closed-
loop.

42 Chapter 4. Practical evaluation

The MRS system allows loading a predefined trajectory using a trajectory tracker. The
trajectory has to be sampled with 5 Hz frequency, because the tracker reads the samples with
this rate. The MPC tracker, mentioned in Chapter 1.0.2, forms a feasible control reference
for the SO(3) controller so that it satisfies constraints imposed by the UAV dynamics.

The simple trajectory to follow is the constant velocity trajectory show in Figure 4.3.
The constant velocity profile of this trajectory, shown in Figure 4.4, is problematic due to the
infinite magnitude of acceleration while starting from zero initial velocity. The example has
trajectory of total length stotal = 12 m and constant velocity v = 1 m s−1. The acceleration
is not infinite at the beginning due to the sampling frequency. The velocity change between
the first two samples is δv = 1 m s−1 and the time to reach it is t = 0.2 s, hence acceleration
between the first and second sample is a = v

t = 1
0.2 = 5 m s−2. As shown in Figure 4.4, the

acceleration constraints (amax = 0.4 m s−2) are violated. The figure shows the velocity and
acceleration in each axis separately. The reason is that the points are sampled, assuming
constant velocity. Thus the acceleration is violated just at the beginning before reaching the
max velocity. In every corner of the trajectory, where the velocity is changed from x-axis to
y-axis or vice versa, the acceleration reaches ±5 m s−2. The MPC tracker prevents outputting
a control reference that would violate the acceleration constraints. The accelerations from the
constant velocity trajectory are bounded to the acceleration limit which results in a feasible
control reference at the cost of precision of trajectory tracking, which can be seen in Figure
4.3, where the control reference cannot reach the corner of the square due to the acceleration
constraints.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
[m

]

Trajectory samples for constant velocity

Trajectory samples
Ground truth

Figure 4.3: Constant velocity trajectory example showing violation of acceleration constraints during the UAV
flight. The ground truth trajectory represents the flown trajectory with the MPC tracker. The trajectory
following for MPC tracker is not precise, because the MPC prevents the control reference from violating
the acceleration constraints. The example has trajectory of total length stotal = 12 m and constant velocity
v = 1 m s−1.

The difference between the desired trajectory and the constrained control reference can,
however, endanger success of some missions, where precise trajectory tracking is critical, such

4.2. Trajectory planning 43

0 2 4 6 8 10 12
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

ve
lo

cit
y

[m
s−

1]

Velocity profile for constant velocity

Vel. limit
Vel. x-axis
Vel. y-axis

0 2 4 6 8 10 12
time [s]

−4

−2

0

2

4

ac
ce

le
ra

tio
n

[m
s−

2]

Acceleration profile for constant velocity

Acc. limit
Acc. x-axis
Acc. y-axis

Figure 4.4: Velocity and acceleration profile for constant velocity (v = 1 m s−1) assumption showing violating
of acceleration constraints on edges of the square-shaped trajectory.

as flying through narrow passages, or multi-robot surveillance, such as [63], where deviation
from the original trajectory could result in collision of agents.

44 Chapter 4. Practical evaluation

4.3 Trajectory shaping

To keep the original trajectory shape, trajectory shaping, which modifies the velocity
profile, has to be applied to constrain the acceleration. A trajectory shaping takes a trajectory
with a constant velocity profile and limits the velocity in the critical points of the trajectory
where acceleration limitation would be violated otherwise. As seen in Figure 4.4, the accel-
eration is exceeded three times, which is caused by changing the direction of the flight at
the corners. That is why the corner trajectory points have to be resampled, specifically three
samples at the corners, as shown in Figure 4.5. The yellow samples have to be added into the
trajectory, which limits the acceleration to fulfill the acceleration constraint. The acceleration
limit shown in left Figure 4.5 is equal to amax = 2 m s−1. The acceleration constraint is

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
[m

]

Trajectory samples adjusting

Added samples
Original trajectory samples

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
[m

]

Trajectory samples adjusting

Added samples
Original trajectory samples

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
y

[m
]

Trajectory samples for variable velocity

Trajectory samples
Ground truth

Figure 4.5: Example application of acceleration constraints on constant velocity trajectory with v = 1 m s−1

UAV velocity. The figure on the left has acceleration constraints equal to amax = 2 m s−1. The samples that
are added by the trajectory shaping algorithm to satisfy the acceleration constraints are depicted in yellow.
The figure on the right is an example of a smoothed trajectory with acceleration constrained to amax =
0.4 m s−1 together with the ground truth trajectory representing the flown trajectory with the MPC tracker.
The trajectory tracking his example is much more precise than in Figure 4.3 due to acceleration constraints
application. The error in the right figure is caused by imprecise control of the UAV.

set in practice lower to about amax = 0.4 m s−1 as shown in right Figure 4.5. The resulting
velocity and acceleration profiles of the smoothed trajectory in right Figure 4.6 are shown in
Figure 4.6. The acceleration profile shows some limits exceeding, which is caused by imprecise
trajectory resampling, which is negligible due to trajectory preprocessing by MPC tracker.

The main goal of the trajectory shaping was to limit the acceleration and adapt the
trajectory according to the UAV dynamics. However, if the maximal acceleration is set too
high, the instant change in acceleration to the maximal value is also not physically possible.
A change of acceleration in time is defined as the jerk

j =
da

dt
. (4.5)

Including the jerk into the trajectory planning is possible. However, the MPC tracker has
its constraints on the jerk. Hence the trajectory acceleration is limited by the MPC tracker.

4.3. Trajectory shaping 45

0 5 10 15 20
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

ve
lo

cit
y

[m
s−

1]

Velocity profile for variable velocity

Vel. limit
Vel. x-axis
Vel. y-axis

0 5 10 15 20
time [s]

−0.4

−0.2

0.0

0.2

0.4

ac
ce

le
ra

tio
n

[m
s−

2]

Acceleration profile for variable velocity

Acc. limit
Acc. x-axis
Acc. y-axis

Figure 4.6: Variable velocity trajectory example after resampling the original constant velocity trajectory.

Furthermore, the MPC tracker also has constraints on acceleration and velocity. It is essential
to set the MPC constraints according to the maximal velocity and maximal acceleration of the
trajectory. The MPC then keeps the trajectory shape as it was planned. If the constraints for
MPC tracker velocity or acceleration is lower than the trajectory assumes, the MPC shortcuts
the trajectory, as shown in Figure 4.3.

46 Chapter 4. Practical evaluation

4.4 Gazebo simulator

The UAV platform, along with the whole sensor suite, can be simulated in the realistic
Gazebo simulator [64]. One of the simulated sensors is the RealSense device. It allows simu-
lating the camera device with all the options that the real camera has. It has a color camera,
depth camera, and stereo cameras. The only difference is the absence of the IMU unit directly
in the RealSense camera. However, the IMU unit is already included in the used Pixhawk [65]
flight controller.

The Pixhawk controller contains the ADIS16448 IMU model available from as a PX4
Gazebo simulator plugin1. The model allows parametrizing the IMU in terms of gyroscope
and accelerometer noise density and random walk, which is detailed in Chapter 2.2.3. The
default values of all parameters were used.

The RealSense camera parameters as camera resolution and frame rate are configurable
via the Gazebo model configuration file. It also allows configuring the noise parameters to
demonstrate further the real camera conditions as well as the minimal and maximal dis-
tance that the camera captures. Because simulating a lens distortion is a computationally
expensive operation, which would, especially with multiple-camera setup, limit the real-time
performance of the simulator. Therefore the simulated camera does not have any distortions
of disturbances as the real camera does. Hence the usage of Kalibr software to obtain the
camera parameters is unneeded. The intrinsic parameters are readable from the camera info
ROS message and the camera-IMU transformation with the build-in ROS command-line tool
tf echo. A slight noise was added to the recorded images to simulate the real condition of the
D435i camera. Also, the maximal visible distance of the camera module was set to 80 m.

Despite these settings, proper initialization of the algorithms was not possible at first.
The S-MSCKF algorithm covariance matrix values were rising quickly, resulting in enormous
position error. The SVO was unable to initialize the features in the image, and VINS-Fusion
poses were rapidly jumping. Since all algorithms are well tested on the proven EuRoC datasets
[15], the issue had to be in the simulator. The idea was to import the calibration target from
the Kalibr tool into the simulator and run the calibration process to obtain the camera
parameters. The results showed that the camera baseline is not 5 cm horizontal, as set in the
parameters, but 1 cm vertical. That means the camera model baseline is incorrect. Hence the
algorithms cannot work properly. The image captured by the cameras of the stereo pair has
been taken from the same position, so the algorithms could not estimate the depth of the
features to initialize the localization process correctly.

After fixing the bug, the next Kalibr measurement showed the correct camera position
as it should be. Unfortunately, the Kalibr cannot accurately measure the correct translation
between cameras in the simulator. It was caused by measuring the calibration data during the
flight. Hence there were too fast movements, degrading the calibration process. Therefore the
system transformation, as mention above, can be used directly without any modifications.

The Gazebo simulator struggles with precise timing and timestamps in the published
messages. Occasionally Gazebo publishes the same image message several times, and that can
cause an error in the feature detection process. Also, the same problem is related to the IMU

1https://github.com/PX4/sitl_gazebo

https://github.com/PX4/sitl_gazebo

4.4. Gazebo simulator 47

messages. A message filter has to be applied to filter out the repetitive messages for both
sensors.

The simulation requires an appropriate world that simulates the real conditions for
the UAV flight. The simulation world consisting of grass plain texture was created, giving
available features to track. However, the real-world does not have just a simple grass plain.
Hence the world includes several trees forming a forest, which adds additional features above
the horizon.

The UAV trajectory is planned in the center of the forest, where there is a space for the
planned trajectory to fly. Detailed info regarding trajectory planning is in Chapter 4.2 and
4.3. The tested camera mounting orientations on the UAV in the simulation environment are
shown in Figure 4.7.

(a) (b)

(c) (d)

Figure 4.7: Images of simulation camera attachment on the UAV for front camera orientation (a), 10◦ pitched
camera orientation (b), 30◦ pitched camera orientation (c) and down camera orientation (d).

All algorithms require specific changes in order to work well with the Gazebo environ-
ment. The common requirement for all algorithms is the unique calibration file for each of
the four possible camera orientations.

4.4.1 S-MSCKF

The algorithm requires to start from the stationary position to properly initialize the
EKF covariances. Hence it is preferred to launch the S-MSCKF right before the flight or in
a stable flight position. The noise values, representing the standard deviations of IMU mea-
surements and bias random walk, has to be changed in order to increase the filter robustness

48 Chapter 4. Practical evaluation

and stability. The IMU noise values are increased, and the feature noise is decreased w.r.t.
the default values from S-MSCKF example files. The feature noise decrease is paired with an
increase of feature amount in the image processing part.

4.4.2 SVO

SVO can initialize quickly before the flight, so it does not require to start from a
stationary position. SVO has been proposed for forward and down camera orientations, hence
the SVO parameters have to be modified while changing camera orientations. Otherwise,
the higher number of features is kept to make sure the SVO is stable during the flight. As
mentioned, the IMU is used only to adjust the feature observations. However, proper settings
of the IMU priors are crucial to handle angular motions of the UAV.

4.4.3 VINS-Fusion

VINS-Fusion requires proper initialization at the beginning, similarly to S-MSCKF.
VINS temporal calibration feature and extrinsic calibration estimation are switched off due
to precise extrinsic calibration in the simulator and zero time offset between the camera
images and IMU measurements. The default IMU parameters as the standard deviation of
measurements and bias random walk for both algorithms have to be increased appropriately
to the same values as used in S-MSCKF. The Ceres maximal solver time has to be adjusted
for different scenarios, as described in Chapter 4.7.

4.5 Algorithm compatibility with MRS system

Before any further scenario description, the compatibility of algorithms with D435i and
T265 camera has to be tested. A discussion of the capability of algorithms to be used with
the MRS system, not just in the gazebo simulator follows.

The algorithms were tested on similar hardware setup, as mentioned in Chapter 2.3.
The IMU on camera was set to the highest rate possible, which was 400 Hz for gyroscope and
250 Hz for the accelerometer. The highest possible IMU rate guarantees accurate movement
detection in the flight.

All algorithms were compatible with the D435i camera. Unfortunately, the T265 cam-
era was unable to be launched with the SVO algorithm. The feature matching from stereo
fisheye cameras is not currently possible, as authors have confirmed. It is related to imprecise
undistortion of fisheye images. The T265 camera has unpleasant limitations as missing the
Gazebo simulator model, only static camera parameter settings, and unable to launch SVO
in a stereo configuration. Due to these limitations, the T265 camera is not considered in the
next experiments at all.

The first experiments on the UAV have been with Intel NUC PC Intel NUC 7i5BNK2

which has four cores on a processor unit. At first, the compressed camera images and IMU

2https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc7i5bnk.html

https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc7i5bnk.html

4.6. Testing scenarios 49

data were recorded without the algorithms running. The test aim to verify if the camera
message publishe rate and dataset recording work well together. Camera resolution was set
to 1280x720 with a 30 FPS rate. The images were compressed, to achieve the smaller dataset
size. Unfortunately, the image compression process consumes significant CPU resources, so the
algorithms cannot be launched on the UAV with this configuration. Assuming real deployment
of the UAV with the VIO algorithms running, the images will not be recorded. Hence it
is sufficient to record just the algorithms published trajectory, thus lower the CPU load.
It appeared that camera resolution has to be decreased significantly despite the turned off
image recording to be able to guarantee real-time processing. The algorithms publish rate was
about 5 Hz, which is not sufficient for feedback control. Next, the lower camera resolutions
were tested, namely 848x480, 640x480 and 640x360. The position estimation publish rate has
increased to the camera frame rate (30 FPS), but more importantly, the CPU load decreased.
Due to the future presence of other running processes, the 640x360 resolution is used in the
next experiments because of the lowest requirements in the image processing part. Another
improvement came with mounting the newest model Intel NUC Kit 8i7BEH on the UAV
platform. It has the i7 processor with four physical cores and eight with hyperthreading,
which almost doubled the previous configuration and thus increased the CPU resources and
performance. After these changes, the CPU load on all cores has decreased to 30 %. Hence
the algorithms perform well with the rest of the flight essential software.

4.6 Testing scenarios

The algorithms are compared not just in metric precision using evaluation metrics
introduced in Chapter 4.1 but also in suitability for feedback control of the MRS system. The
good results, according to the metric, does not imply better feedback control. According to
brief analysis in Chapter 4.5 only 630x360 resolution is used.

Next, the camera attachment position to the drone is also essential. Camera orientations
can be forward-looking, down looking, and pitched camera under different angles. Usually,
the forward orientation is assumed for most of the algorithms. The great advantage of the
forward orientation is always available features in the straight movement. However, it might
suffer from rapid illumination changes, especially in the outdoor environment in the sunny
weather. Besides that, fast rotation in the yaw angle might decrease the algorithm precision
and increase the drift. Furthermore, the landscape horizon is visible in the middle of the image.
Assuming the forests and hilly regions, about 1/3 of the image contains sky. Features detected
in the sky are very unreliable and unstable, hence detecting these features should be avoided.
This is why the pitched camera might become handy. The pitched camera successfully avoids
the sky features. Hence it observes more ground features and becomes more stable in terms of
feature detection. Also, during fast rotations, more ground features are successfully tracked
between frames than with the forward-looking camera. Moreover, pitching the camera offers
the option of using the down-looking camera. The down-looking approach gives a considerable
advantage in stable feature detection during various weather/lighting conditions, and the fast
rotation becomes no problem for feature tracking. However, the fast movements in low altitude
are challenging due to rapid scene changes, making the feature detection and matching more
difficult. Also, fast accelerations and decelerations of the drone make the UAV pitch angle
unstable, and then the feature detection is even more complicated. Furthermore, taking off

50 Chapter 4. Practical evaluation

is a challenge for the down-looking camera due to features being too close, but if the UAV
is taking off from the feature-rich ground, this problem is not significant. To summarize,
the camera positions have several variants, while each has its advantage and disadvantages.
All these aspects are important to consider while choosing the most suitable solution for
the environment. In this thesis four camera orientations are compared: forward orientation
(indicated as 0◦), 10 degrees pitch (indicated as 10◦), 30 degrees pitch (indicated as 30◦) and
downlooking orientation (indicated as 90◦).

Another important aspect is the frame rate. Generally, the higher the frame rate, the
higher the computational time. However, the higher rate might bring the advantage of slower
feature movement between frames, which can be used mainly during fast movements. Again,
the optimal trade-off has to be found. Three frame rates are considered, given by Table 2.1
specifically 30, 60 and 90 frame per second.

The UAV velocity has been mentioned as an essential aspect of VIO robustness in this
chapter. Hence several UAV velocities are used to generate the UAV trajectory, specifically
1 m s−1, 2 m s−1 and 5 m s−1. The shape of the trajectory is a square with a total length of
80 m. While none of the algorithms have loop-closure in odometry (VINS-Mono, mentioned
in Chapter 3.3 publishes loop-closure odometry in the different topic than original one), there
is no need to design trajectories with multiple loop-closing possibilities.

4.7 Simulator experiments

During some of the experiments, algorithms cannot properly estimate the position from
available data resulting in pose estimation jump or divergence of the algorithm. Any of the
used algorithms cannot correctly recover from such a state, and they have to be restart-
ed/reinitialized. In a real deployment, these situations have to be minimized. These experi-
ments are treated as outliers and test marked as failed and not included in algorithm evalu-
ation.

The simulation tests are divided into four parts. In the first part, the 640x360 resolution
with 30 FPS is set, and all algorithms are tested with all combinations of velocity and camera
orientations. The reason is lower data bandwidth and lower processing time than higher FPS
rates and resolutions. The second part follows up with experiments in higher altitude for 90◦

camera orientation. In the third part, the lower UAV altitude is analyzes along with higher
FPS rates. Lastly, the algorithm performance is verified in feedback control on the simulation
UAV.

The simulation experiments are using a gazebo simulation GPS for the feedback control
of the UAV control system. The gazebo simulator generates the ground truth used, hence it
is the exact UAV position with no disturbances.

During the first simulation experiments, no relation between UAV orientation during the
flight and VIO precision has been found. To assume most generality, the forward orientation
is used in further simulation experiments. It brings the most options in the various scenarios
with the UAV, where specific UAV orientation is desired.

4.7. Simulator experiments 51

4.7.1 Camera orientation test

Because the EuRoC dataset [15] uses the 752x480 camera resolution, the 640x360 cam-
era resolution is used as similar resolution size. The camera plugin can simulate any resolution,
but the limitation is the D435i camera, which has limited resolutions, as shown in Table 2.1.
Next, the camera frame rate is set to 30 FPS. This combination of camera resolution (640x360)
and frame rate (30 FPS) is presumed to be the stable and well working one. The camera res-
olution is reasonable in terms of computational time and a sufficient amount of features. The
frame rate should be satisfactory for the velocity of planned scenarios. As mentioned in Chap-
ter 1.0.2, the altitude of the UAV is determined by fusion of the laser rangefinder and the
barometer sensor, hence the altitude is constant and equal to z = 3 m. Table 4.1 summarizes
the algorithms results.

Camera
Orientation

UAV velocity
[m s−1]

S-MSCKF SVO VINS-Fusion
ATE RPE ATE RPE ATE RPE

0◦ 1 0.3946 0.0981 0.1932 0.0718 0.2625 0.0473
0◦ 2 0.2747 0.0959 0.4987 0.1007 0.4770 0.0561
0◦ 5 0.4089 0.1208 0.8866 0.1433 0.4306 0.1415

10◦ 1 0.2816 0.0758 0.2821 0.1837 0.2274∗ 0.0329
10◦ 2 0.2678∗ 0.0777 0.5334 0.2534 0.3625 0.0440
10◦ 5 0.3754 0.1019 0.5809 0.2897 0.3166 0.0833

30◦ 1 0.1825 0.0417 0.4475 0.0469 0.0737∗4 0.0577
30◦ 2 0.2798 0.0683 0.4280 0.0648 0.1185∗ 0.0681
30◦ 5 0.61064 0.0844 0.4375 0.0996 0.117∗3 0.1384

90◦ 1 0.3195∗∗3 0.0784 0.2566 0.0862 0.0475∗2 0.0387
90◦ 2 0.6068∗∗4 0.1174 0.4378 0.1114 0.0764∗4 0.0534
90◦ 5 1.4281∗∗2 0.1974 2.2822 0.0912 9.2172∗1 0.6869

Table 4.1: Each scenario has been repeated 5 times on the same dataset to check the robustness and precision.
The value in the table is the mean from these five trials. The best scenario result accomplished for all trials for
each algorithm, and every camera orientation is in bold. The number ()n, n ∈ {1, .., 5}, if present, indicates the
count of successful test repetitions giving the calculated ATE. If not present, all repetitions were successful.
The tests marked with ()∗ required initial dataset time postpone. The tests marked with ()∗∗ required both
initial dataset start time postpone and earlier end of the dataset.

Regarding the velocity, the results demonstrated that most feasible is the scenario with
UAV velocity equal to 1 m s−1 for all algorithms, because of the UAV stability and lack of rapid
UAV movements during the flight. Generally, the higher the velocity, the lower robustness,
and stability. It is caused by the increase of rapid movements, faster scene changes resulting
in longer image processing time, and generally more challenging optimization and filtering of
position.

Regarding the camera orientation, the down-facing camera orientation had the worst
results. One of the reasons is the closeness of the grass texture during takeoff. The used
grass texture might not have sufficient resolution, and the proximity of the camera challenges
the image processing for all algorithms. The time was postponed to approximately the 15-th
second of the dataset, where the UAV reached the maximal altitude. The second reason is

52 Chapter 4. Practical evaluation

the low altitude of the flight. During the fast velocity movement, the features were changing
too fast to handle it.

Generally, S-MSCKF requires initial stable position to initialize accelerometer bias,
gyroscope bias and UAV orientation, however some scenarios cannot fully guarantee stable
initial position such as 90◦ camera orientation scenarios. The reason is the feature absence at
the beginning and at the end of the flight, which required the modification of start and end
time of the 90◦ scenario dataset. The 10◦ camera orientation and the UAV 2 m s−1 velocity
scenario required only slight time adjustment. The S-MSCKF does not perform well during
a longer duration of hovering or stationary pose, resulting in an unstable filter state and an
increase in the filter covariance. Figure 4.8 shows the example of very precise estimation of
S-MSCKF algorithm for 30◦ camera orientation with 1 m s−1 UAV velocity.

The SVO algorithm proved to be the most robust in terms of repeatability. It has
accomplished all the scenarios and the repetitions without any failed trial and any time
adjustment of the dataset. The SVO does not initialize until successfully triangulating the
features from the image. This is the reason why 90◦ camera works because the initialization
starts in the air, and SVO does not require IMU initialization. However, the precision of the
SVO is not the best one in most of the scenarios. This might be induced by insufficient tuning
of the algorithm, although the ATE value is still pretty impressive on the global scale.

The VINS-Fusion algorithm outperformed the other tested algorithms in most of the
tests in terms of precision. Nevertheless, the algorithm encountered issues with robustness,
especially with a 90◦ camera in the high velocity. The problem is caused by low altitude
and fast feature changes, especially during the higher UAV velocity scenarios. Furthermore,
the Ceres solver [53] maximal optimization time parameter raises the processing time of the
incoming messages. It was necessary to decrease the maximal optimization time so that the
algorithm can run in the realtime, but the robustness of the solution might be lower then.
Further, the initialization process is crucial for the VINS-Fusion, as mentioned in Chapter
3.3, which becomes challenging for scenarios as denoted by ()∗. Thus the time adjustment
increased the repeatability. Figure 4.9 shows an example of the failed pose estimation trial
for 90◦ camera orientation with 1 m s−1 UAV velocity resulting in big ATE and RPE error.

The camera orientation results in Table 4.1 shows that all camera orientation scenarios
tested are comparable except the 90◦ camera orientation, which performed successfully for all
trials only in lower velocities for SVO. However, that assumption is misleading, because the
altitude of the UAV during the flight was too low for 90◦ camera orientation, which is shown
in Chapter 4.7.2.

4.7.2 High altitude test

In previous test, the constant altitude of the UAV was presumed for all scenarios.
However, the 90◦ camera orientation appeared to be inappropriate for low altitudes and
higher velocities. In this test, the higher altitude for 90◦ camera orientation is tested. The
resolution and frame rate is the same for all tests, which is 640x360 and 30 FPS, respectively.
The other camera orientations are not tested, because the higher altitudes do not offer enough
feature possibility for these orientations in the simulation world. The test summary is shown
in Table 4.2.

4.7. Simulator experiments 53

0 5 10 15 20
x [m]

0

5

10

15

20

y
[m

]

Aligned S-MSCKF pose estimation to the ground truth

ground truth
VIO estimation
difference

(a)

0 20 40 60 80 100 120
time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

tra
ns

la
tio

na
l e

rro
r [

m
]

Translation error between the S-MSCKF pose
 estimation and the ground truth trajectory

(b)

Figure 4.8: Figure shows results of one of the successful trial for scenario with 30◦ camera orientation and
1 m s−1 UAV velocity set. Aligned S-MSCKF pose estimation trajectory to the ground truth is shown in (a)
giving ATE = 0.1926 m. The difference (red line) is shown only for every 10-th sample for clarity. The trajectory
error (b) is calculated from the originally measured trajectories (not aligned) and give RPE = 0.0341 m.

−600 −400 −200 0 200
x [m]

−150

−100

−50

0

50

y
[m

]

Aligned VINS-Fusion pose es ima ion o he ground ru h
ground ru h
VIO es ima ion
difference

(a)

0 20 40 60 80 100
time [s]

0

5

10

15

20

tra
ns

la
tio

na
l e

rro
r [

m
]

Translation error between the VINS-Fusion pose
 estimation and the ground truth trajectory

(b)

Figure 4.9: Figure shows results of one of the failed trial for scenario with 90◦ camera orientation and 1 m s−1

UAV velocity set. Aligned VINS-Fusion pose estimation trajectory to the ground truth is shown in (a) giving
ATE = 289.7062 m. The difference (red line) is shown only for every 40-th sample for clarity. The trajectory
error (b) is calculated from the original measured trajectories (not aligned) giving RPE= 13.0215 m.

Both S-MSCKF and VINS-Fusion algorithms required dataset start and end time ad-
justment for the same reasons, as mentioned in the previous test in Chapter 4.7.1. However,
the higher altitude improved both algorithms’ robustness. The reason is more extended feature
”life” even during the faster velocities. Same as in Chapter 4.7.1, the VINS-Fusion required
a decrease in the maximal Ceres solver time to track the UAV position in real-time.

The simulator world comprises trees of about 6 meters high. The tests with UAV altitude
equal to 6 meters are about that altitude, so the camera observes just the grass. However,
the 10 meters UAV altitude leads to the observation of the top of the trees, which might

54 Chapter 4. Practical evaluation

UAV
Altitude [m]

UAV velocity
[m s−1]

S-MSCKF SVO VINS-Fusion
ATE RPE ATE RPE ATE RPE

3 2 0.60684 0.1174 0.4378 0.1114 0.07644 0.0534
3 5 1.42812 0.1974 2.2822 0.0912 9.21721 0.6869

6 2 0.1073 0.0737 0.3987 0.2342 0.1012 0.0979
6 5 0.21343 0.1670 0.5239 0.2717 0.0852 0.0942

10 2 0.3422 0.1684 3.8580 0.6880 0.17534 0.1134
10 5 0.2480 0.1915 10.57733 1.3361 0.23153 0.2055

Table 4.2: Each scenario has been repeated 5 times on the same dataset to check the robustness and precision.
The value in the table is the mean from these five trials. The best scenario accomplished for all trials for
each algorithm, and every altitude is in bold. The number ()n, n ∈ {1, .., 5}, if present, indicates the count of
successful test repetitions giving the calculated ATE. If not present, all repetitions were successful.

be misleading for the algorithm image processing. The fast movements of close distance tree
features are not suitable, especially for the SVO algorithm, which fails in the 10-meter altitude.

To summarize, the higher the altitude, the higher the velocity that can be achieved.
Nevertheless, the limitations are fast-changing features in front of the camera, which influence
the maximal reachable altitude. Hence the best results were achieved for all algorithms in the
6 m altitude.

4.7.3 High FPS rate

As shown in the previous test in Chapter 4.7.1, the 30 FPS camera rate seems to be
sufficient to handle even the high velocities. However, the 90◦ camera orientation struggled
with the rapid feature changes during the low altitude flight. In this test, the higher FPS rates
are tested for 90◦ camera orientation to improve the feature tracking precision potentially. The
camera resolution used is 640x360. The UAV altitude is kept on 3 m. Table 4.3 summarizes
the results.

The 1 m s−1 and 2 m s−1 UAV velocities are tested with higher frame rate just for clarity.
Both velocities are already low enough to be tracked with a 30 FPS camera rate.

The SVO results proved that the authors note regarding the higher camera frame rate.
The higher camera frame rate reduces the computational cost per frame, which is useful
especially in higher velocities as seen in Table 4.3 for scenarios with 5 m s−1 UAV velocity.
The higher FPS rates improved the precision of the SVO result.

Both S-MSCKF and VINS-Fusion results have not benefited from the higher frame rate
in this test The higher frame rate did not improve the ability of feature tracking in all tested
velocities. Additionally, the VINS-Fusion cannot process the higher frame rate in the realtime
despite the parameter tuning. The tuning of calculation time results in an unstable position
estimate.

To summarize, the VINS-Fusion is not robust with higher frame rates. The SVO ap-
proved to be stable and well-working with high frame rates. The S-MSCKF algorithm also
struggles with fast feature changes, and the higher frame rate just degrades the filtering
process.

4.7. Simulator experiments 55

Camera FPS
UAV velocity

[m s−1]
S-MSCKF SVO VINS-Fusion

ATE RPE ATE RPE ATE RPE

30 1 0.31953 0.0784 0.2566 0.0862 0.04752 0.0387
30 2 0.60684 0.1174 0.4378 0.1114 0.07644 0.0534
30 5 1.42812 0.1974 2.2822 0.0912 9.21721 0.6869

60 1 0.59863 0.1147 0.1843 0.0429 0.0355∗4 0.0233
60 2 0.37584 0.2837 0.2579 0.0645 0.0294∗2 0.0134
60 5 0.31411 0.1534 0.4384 0.1048 0.0567∗ 0.0712

90 5 1.05131 0.9427 0.4095 0.0912 x x

Table 4.3: Each scenario has been repeated 5 times on the same dataset to check the robustness and precision.
The value in the table is the mean from these five trials. The best scenario accomplished for all trials for each
algorithm, and every FPS rate is in bold. The number ()n, n ∈ {1, .., 5}, if present, indicates the count of
successful test repetitions giving the calculated ATE. If not present, all repetitions were successful. The (x)
symbol means none of the tests were successful. The ()∗ symbol means that VINS-Fusion did not publish the
odometry message in the realtime.

4.7.4 Feedback control

In this test, the VIO is tested in the feedback of the UAV control system as described
in Chapter 1.0.2. The output of each algorithm is transformed as mentioned in Chapter 3.1.1,
3.2.1 and 3.3.1 so that VIO positions are in the same frame of reference as the ground truth.
S-MSCKF and VINS-Fusion are directly publishing the odometry message, also containing
velocity in addition to the position and orientation. SVO publishes just the position and
orientation, so the velocity has to be obtained by fusion of the VIO position output with the
accelerations in the UAV state estimation module in Figure 1.3.

Each of the algorithms publishes the position in a different frame. Hence the corre-
sponding transformation has to be taken into account to have the message in the local origin
frame. Previously, the algorithms could be tested on the same dataset. To test the feedback
control, every run might be slightly different. Hence the result is not as precise as before.

As the simulation test showed, there is not a vastly different result between the 0◦

camera orientation and 10◦ or 30◦ camera orientations. The reason is probably the constant
light conditions in the simulator, which cannot precisely simulate the sudden light changes
while rotating due to fast exposure changes. In other words, the simulation camera is a precise
model of the real camera giving too good results. This is why only 0◦ and 90◦ orientations
are tested in the feedback for simulation. Also, the fast frame rate did not perform well with
the S-MSCKF and VINS-Fusion algorithms. Hence only 30 FPS rate is used. The SVO has
proved its robustness in a higher FPS rate, so 60 FPS rate is used for it. Furthermore, the
altitude is set to 5 m for the 90◦ camera orientation and 3 m for the 0◦ camera orientation.
The reason for the lower altitude is the most stable flight than in higher altitudes, which has
been noticed while simulating the feedback control. The results are summarized in Table 4.4.

All algorithms required specific changes in the control system of the UAV. However,
the changes are also related to the camera orientation. The 0◦ camera orientation worked
well with the default settings of the SO(3) controller for the UAV in the simulation. The

56 Chapter 4. Practical evaluation

Camera
Orientation

UAV velocity
[m s−1]

S-MSCKF SVO VINS-Fusion
ATE RPE ATE RPE ATE RPE

0◦ 1 0.6473 0.0871 0.6182 0.0610 0.3369 0.0451
0◦ 2 0.3202 0.0967 0.7480 0.0781 0.4145 0.0944
0◦ 5 0.4518 0.1390 1.2714 0.0994 0.3961 0.0773

90◦ 1 0.0647 0.0504 0.3470 0.1041 0.0402 0.0294
90◦ 2 0.1185 0.0630 0.2481 0.0973 0.0378 0.0371
90◦ 5 0.2437 0.1426 0.3894 0.1131 0.1078 0.0631

Table 4.4: Each scenario has been repeated 3 times to check the algorithm robustness and precision. The value
in the table is the mean from these three trials. The best scenario accomplished for all trials for each algorithm
and every camera orientation is in bold.

state feedback constants kp for the position, and kv for velocity had to be decreased to reduce
aggressive motions of the UAV, hence smoothing the final trajectory. This approach might
bring a small control error into the system, but more importantly, if it increases the VIO
stability and tracking precision for this orientation. The 0◦ camera orientation worked well
with the default constants. Although during the high velocity (5 m s−1) scenarios the tracking
precision was slightly improved with lowering kp and kv.

Generally, the best precision was achieved with 90◦ camera orientation with lower ve-
locities. Again, the UAV cannot take off with 90◦ camera orientation with the VIO in the
feedback, due to lack of the features while staying on the ground. The UAV has to take off
with another odometry sources, e.g., GPS. The VINS-Fusion achieved an almost driftless tra-
jectory with 90◦ camera orientation, which places it as one of the top candidates for the real
deployment. The biggest issue for VINS-Fusion is precise initialization. Even small movements
of the UAV while hovering propagates error into the tracking precision. Also, VINS-Fusion
might struggle with optimizing in real-time. Once VINS-Fusion computations are delayed
several times in a row, it cannot recover successfully. This is the reason why it is better to fly
with lower velocity. The S-MSCKF results show that it also performs well with the 90◦ camera
orientation. Same as VINS-Fusion, the initialization is critical for S-MSCKF, but otherwise,
there are no requirements to adjust the parameters for different UAV velocities. The SVO
precision for 90◦ camera orientation is better than the results for 0◦ camera orientation. The
reason is the feature tracking stability for 90◦ camera orientation, which is essential for SVO.
The higher FPS rate guarantees better precision in higher velocity.

The 0◦ camera orientation results are slightly worse than the 90◦ camera orientation.
The reason is the longer feature visibility for 90◦ camera orientation in fast straight movements
and fast rotations at the trajectory corners. The S-MSCKF stability is satisfactory among
all velocities for 0◦ camera orientation. The EKF based approach on the fusion of features
and IMU improves the stability during rapid movement changes, such as acceleration and de-
celerations when features are changing faster. Similarly, the VINS-Fusion optimization-based
equally on visible features, and IMU measurements assure the stability. Contrary, the SVO
relies basically just on the features. The IMU measurements are just for motion corrections,
hence just improves the result. During the rapid movement changes, the number of features
might decrease rapidly, resulting in positional drift.

As mentioned in Chapter 4.1, ATE, and RPE values are highly correlated, which can

4.7. Simulator experiments 57

be seen in the evaluations. Hence only ATE is shown further for clarity. The feedback control
test, presented in Figure 4.5, shows an evaluation of precision during longer flights. Every
scenario has been tested on the same square trajectory, but the trajectory was looped five
times to ensure the consistency of trajectory following. The parameters are set for this test the
same as for the feedback test shown in Table 4.4. For S-MSCKF and VINS-Fusion algorithms,
the 30 FPS rate is set for all scenarios. For the SVO algorithm, the 60 FPS rate is set for all
scenarios. Furthermore, the altitude is set to 5 m for the 90◦ camera orientation and 3 m for
the 0◦ camera orientation.

Camera
Orientation

UAV velocity
[m s−1]

S-MSCKF SVO VINS-Fusion

0◦ 1 0.8458 1.8530 0.4443
0◦ 2 0.6235 2.7066 0.5608
0◦ 5 0.7597 2.7415 0.7083

90◦ 1 0.1545 0.4550 0.0876
90◦ 2 0.2274 0.4441 0.2655
90◦ 5 0.7278 1.1572 0.8544

Table 4.5: ATE results for 5 times looped square trajectory. The best scenario for each algorithm and every
camera orientation is in bold.

The 90◦ camera orientation resulted in accurate trajectory tracking. Mainly S-MSCKF
and VINS-Fusion algorithms have achieved low position error over the whole trajectory. The
precision of VINS-Fusion algorithm is shown in Figure 4.10. SVO algorithm drifts over time,
which then results in high ATE. Figure 4.11 shows the drift of SVO algorithm in time.

0 5 10 15 20
x [m]

0

5

10

15

20

y
[m

]

Aligned VINS-Fusion pose estimation to the ground truth

ground truth
VIO estimation

(a)

0 100 200 300 400
time [s]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

tra
ns

la
tio

na
l e

rro
r [

m
]

Translation error between the VINS-Fusion pose
 estimation and the ground truth trajectory

(b)

Figure 4.10: Figure shows the result of 5 times looped square experiment for VINS-Fusion feedback control
with 90◦ camera orientation and 1 m s−1 UAV velocity. Figure (a) shows the aligned VINS-Fusion trajectory to
the ground truth giving ATE= 0.0876 m. For clarity purposes, the difference between the time samples is not
displayed. The trajectory error (b) is calculated from the original measured trajectories (not aligned) giving
RPE= 0.0277 m.

58 Chapter 4. Practical evaluation

0 5 10 15 20
x [m]

−5

0

5

10

15

20

y
[m

]

Aligned SVO pose estimation to the ground truth
ground truth
VIO estimation

(a)

0 50 100 150 200
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

tra
ns
la
tio

na
l e

rro
r [
m
]

Translation error between the SVO pose
 estimation and the ground truth trajectory

(b)

Figure 4.11: Figure shows the result of 5 times looped square experiment for SVO feedback control with 0◦

camera orientation and 2 m s−1 UAV velocity. Figure (a) shows the aligned VINS-Fusion trajectory to the
ground truth giving ATE= 2.7066 m. For clarity purposes, the difference between the time samples is not
displayed. The trajectory error (b) is calculated from the original measured trajectories (not aligned) giving
RPE= 0.0951 m.

4.8 Real experiments

In this chapter, the acquisition of reference datasets is described as well as algorithm
comparison on these datasets. Finally, the suitable algorithms are tested in the feedback
control of the real UAV.

4.8.1 Dataset acquisition

The experiments were held during the middle of October 2019. At that time, the trajec-
tory planning with acceleration constraints, as presented in Chapter 4.2, has not been imple-
mented yet. The constant velocity trajectory limits the ability of the real UAV to smoothly
follow the trajectory, hence only lower velocities are considered, specifically 0.5 m s−1, 1 m s−1

and 2 m s−1. The higher the velocity, the less precise trajectory following is due to the MPC
tracker that tries to minimize the control error and control input while respecting constraints
imposed on the UAV dynamics. When the planned trajectory is not feasible (i.e. does not
respect the dynamics of the real UAV), the tracker can still generate a feasible reference for
the controller. However, the trajectory shape might get modified and the trajectory following
precision might suffer. As mentioned in Chapter 1.0.2, the world frame is essential for UAV
control. The world frame is tied to the GPS coordinate system, and the origin of the world
frame is set according to the GPS coordinates of the experiment area approximate center.
This arrangement ensures to recognize the position when the UAV crosses the border of the
experiment area and does not allow to set a reference for the controller, which would have the
UAV outside of the experiment area. It is handy for the cases when a new feature is tested, so
in case of the algorithm unpredicted behavior and remote controller signal loss the UAV can
safely land. Also, it allows to visually compare the ground truth and VIO estimated position

4.8. Real experiments 59

(a) (b)

(c) (d)

Figure 4.12: Images of D435i camera attachment on the UAV for 0◦ camera orientation (a), 10◦ camera
orientation (b), 30◦ camera orientation (c) and 90◦ camera orientation (d).

in the RVIZ (3D visualization tool for ROS) during the flight for the VIO feedback control.
In the dataset acquisition part, the RTK GPS is used for the feedback control of the UAV
control system and also as the ground truth for comparison.

All datasets are recorded with a 30 FPS rate. The higher frame rate is impractical due
to the growing size of the recorded datasets. As simulation experiments showed, the higher
frame rate is not such an improvement in pose estimation precision. Only the SVO algorithm
profits from the higher frame rate, but mostly in terms of processing time, which is not so
crucial in the current UAV available computational load. The default altitude is set to 3 m
for all datasets except the 90◦ camera orientation with the 1 m s−1 UAV velocity, where the
altitude is set to 5 m to facilitate feature tracking during maneuvers involving aggressive
tilting or high velocity.

During the real experiments, the sunlight significantly influences the camera. Hence the
different UAV orientation during the flight, as mentioned in Chapter 4.2, becomes handy in
feedback control with the real UAV, Chapter 4.8.3.

60 Chapter 4. Practical evaluation

4.8.2 Dataset algorithms comparison

The main difference against the simulation environment is the presence of the IMU
unit in the D435i camera. All algorithms presume three-camera frames: a camera frame, an
IMU frame, and a body frame. The images captured from the camera are positioned in the
camera frame. The IMU measurements are placed in the IMU frame. Finally, the estimated
position is published in the body frame. However, VINS-Fusion and SVO assume the body
frame the same as the IMU frame. That option worked pretty well for the simulation, but it
would be more practical to set the transformation between the IMU frame and body frame
arbitrarily. Next, for the pitched real camera, the estimated position is also pitched with
the same angle and orientation as the camera is. Hence the transformation of the published
position estimation w.r.t. UAV orientation has to be applied. The S-MSCKF algorithm allows
setting the relation between the UAV (body) frame and the IMU frame. Hence the published
message can represent the UAV position and orientation correctly. For SVO and VINS-Fusion
presuming the body frame as the IMU frame, the correction is more complicated. The UAV
position for SVO and VINS-Fusion is correct, but every message orientation has to be adjusted
individually for the camera orientation angle, to match the UAV orientation.

Again, certain modifications have to be applied to the parameters of the algorithms. The
IMU measurements are heavily influenced by the UAV propellers vibration during the flight.
However, that is something that cannot be easily eliminated, so the algorithm parameters
have to be adjusted. S-MSCKF algorithm noise parameter for the accelerometer had to be
increased. Otherwise, the filter is more susceptible to diverge. VINS-Fusion algorithm needs
as same as S-MSCKF to increase the noise parameters, but the best-found values minimizing
the ATE are slightly higher than with S-MSCKF. Only accelerometer measurement noise has
to be increased. VINS-Fusion assumes perfect calibration between the camera and the IMU.
Unfortunately, the extrinsic calibration used does not work well without adjusting it first. The
extrinsic calibration estimation has to be turned on together with the temporal calibration
feature. SVO does not heavily depend on the IMU. Hence only minor adjustment had to be
applied regarding IMU priors.

The results in Table 4.6 indicates the algorithm suitability for deployment on the real
UAV. The overall best results were achieved with the S-MSCKF algorithm. It outperformed
the other two algorithms in all tests, except the 30◦ camera orientation, which is explained
later. The explanation for the good results is the well-balanced noise parameters for IMU and
features. VINS-Fusion which was the best candidate from the simulator experiments, however,
worked well in all trials except the 90◦ camera orientation. The only difference against the
simulation environment is much better initial conditions for 90◦ camera. In the beginning,
the camera is about 12 cm distant from the ground, which is sufficient enough to initiate the
algorithms on the ground. Still, the proximity of all visible features seems to misalign the
scale of VINS-Fusion at startup, giving the big ATE result. The postponed the start of the
algorithm, compared to the simulation environment experiments, did not work well due to
the strong propeller-induced vibrations. SVO performance is for the 90◦ camera orientation
similarly overscaled because both VINS-Fusion and SVO depend more on the features than
IMU. S-MSCKF feature noise can be set in the EKF. Hence it can handle the 90◦ camera
orientation much better.

SVO more or less failed in all tests. The problem seems to be low quality of camera
images. SVO can detect enough features. However, the trajectory scale is not correct.

4.8. Real experiments 61

Camera
Orientation

UAV velocity
[m s−1]

S-MSCKF SVO VINS-Fusion

0◦ 0.5 0.5533 1.6090 1.7885
0◦ 1 0.6878 2.0226 1.8431
0◦ 2 0.3553 2.5472 0.6605

10◦ 0.5 0.2797 2.7256 0.4704
10◦ 1 0.6952 2.4049 0.9081

30◦ 0.5 x 5.5443 0.5744
30◦ 1 x 4.8295 1.2863
30◦ manual 0.4175 3.9779 0.4983

90◦ 0.5 0.7793 9.1213 3.02011

90◦ 1 0.4793 6.0972 5.32231

Table 4.6: ATE results (in meters) for 3 times repeated real UAV dataset. The number ()n, n ∈ {1, .., 3},
if present, indicates the count of successful test repetitions giving the calculated ATE. If not present, all
repetitions were successful. The x symbolizes none of the repetitions were successful. The manual UAV veloc-
ity symbolizes the remote reference position set for the UAV from the remote controller. The best scenario
accomplished for all trials for each algorithm and every camera orientation is in bold.

The scale is different for every dataset, hence some further parameter adjustment might
increase the performance. However, all attempts to improve the precision failed. The loosely
couples IMU configuration cannot improve the estimation performance.

Suprisingly, the 30◦ camera orientation, specifically the 0.5 m s−1 and 1 m s−1 UAV
velocities fails for S-MSCKF and decrease the performance for both SVO and VINS-Fusion.
The D435i camera suffers from occasional flickering, especially under outdoor sunlight, when
using the auto exposure mode. Unfortunately, due to inconsistent light conditions during
the whole flight, the exposure cannot be set to a single value. This issue has already been
reported and fixed in the latest production firmware release3 for the D435i camera. It seemed
that this error has not excessively influenced the algorithm estimation. However, in practice,
this flickering can be frequent, especially in the outdoor environment, which can completely
corrupt the feature detection from captured images. However, another issue showed up during
the dataset recording. Sometimes, the D435i right infrared camera projects a pattern into the
captured image. An example of such a projection is shown in Figure 4.13. It is the reason
why S-MSCKF and partially VINS-Fusion performance is worse than with other camera
configurations. S-MSCKF cannot correctly match the features between the cameras, which
affects this algorithm. The visible and matched features for such an corrupted image for S-
MSCKF algorithm is shown in Figure 4.14 VINS-Fusion feature detection has similar pattern
as S-MSCKF has as shown in Figure 4.15. Nonetheless, the visible features are sufficient to
estimate the position for the 0.5 m s−1 flight. The 1 m s−1 flight is slightly worse due to higher
velocity. The pattern has also been spotted in some of the 0◦ camera orientation datasets.
However, it did not influence performance significantly. Only a single square-shaped dataset
for 30◦ camera orientation has not been impacted by the pattern. It is why the evaluation
consists of manual flight. The manual flight proved the trend of S-MSCKF and VINS-Fusion
providing a more robust estimation compared to SVO over all the datasets.

3https://downloadmirror.intel.com/29255/eng/RealSense-D400-Series-Spec-Update.pdf

https://downloadmirror.intel.com/29255/eng/RealSense-D400-Series-Spec-Update.pdf

62 Chapter 4. Practical evaluation

(a) (b)

Figure 4.13: The image (a) is the correct image from the left infra camera. The image (b) is affected by the
projected pattern creating a noisy image.

Figure 4.14: An example of S-MSCKF detected features for the captured images influenced by the pattern. The
left image represents the not affected camera, and the right image represents the affected image. The center
part is affected by the pattern the most as there are almost no features detected. The blue grid represents the
areas where the algorithm searches for features. Every cell has a defined maximum amount of features to be
detected.

Figure 4.15: An example of VINS-Fusion detected features for the pattern influenced captured images. The
left image contains all features detected in the left unaffected image. The blue points represent the newest
features. The red points represent the oldest features. The right image shows the matched features between
the left and right images used for estimation. As seen the center part has no matched features due to pattern
in the right image.

Generally, all camera orientations worked well on the real UAV datasets. As discussed
in Chapter 4.6, the advantage of pitched camera 10◦ might be the absence of direct sunlight
on the camera while keeping most of the features in front of the UAV as assumed by the

4.8. Real experiments 63

−12 −10 −8 −6 −4 −2 0
x [m]

−6

−4

−2

0

2

4

y
[m

]

Aligned S-MSCKF pose estimation to the g ound t uth

g ound t uth
VIO estimation
diffe ence

(a)

−6 −4 −2 0 2 4
x [m]

−8

−6

−4

−2

0

2

4

6

y
[m

]

Aligned S-MSCKF po e e timation to the ground truth

ground truth
VIO e timation
difference

(b)

Figure 4.16: The figure (a) represents the aligned trajectories of ground truth and S-MSCKF algorithm for
0◦ camera orientation and 0.5 m s−1 UAV velocity, ATE=1.0898 m. The figure (b) represents the aligned
trajectories of ground truth and S-MSCKF algorithm for 0◦ camera orientation and 1 m s−1 UAV velocity,
ATE=1.4819 m. For both figures, the difference between samples (red line) is plotted only for every 10-th
sample.

algorithms.

4.8.3 Feedback control with the real UAV

During the outdoor experiments, the S-MSCKF algorithm has already been tuned
enough to be able to test it in the feedback loop of the UAV control system. SVO algo-
rithm was not as successful, but it was stable enough to test its performance. Unfortunately,
VINS-Fusion was not tuned enough at that time to test it safely in the feedback loop. Hence
only S-MSCKF and partly SVO results are presented.

The ground truth values are obtained from RTK station, which should have precision
within centimeters. However, the GPS RTK ground truth values can cause sudden jumps
when changing from RTK FIX to RTK FLOAT and vice versa. These jumps can be seen
in the trajectory alignment figures and significantly influence the ATE result. Because every
experiment is unique, the results are presented only in figures.

Figure 4.16 shows that S-MSCKF is suitable to be used in the feedback loop of the UAV
control system. The slightly higher ATE values are mostly caused by RTK jumps, which can
be seen, especially in Figure 4.16 (a). Also, Figure 4.16 (b) shows that in certain parts of the
trajectory, the S-MSCKF estimation might induce some oscillations into the flight. It shows
that during the turns at the corners of the trajectory, the light exposure changes due to the
sunlight might cause wiggle in S-MSCKF pose estimation. Generally, the S-MSCKF worked
well during the experiments.

Despite the volatile SVO performance with the real dataset experiments, SVO pose
estimation was usable in the feedback loop, as shown in Figure 4.17. However, SVO did not
perform well in the rest of the experiments. The metric scale was the issue causing a huge
positional error, and the individual experiments had to be terminated.

64 Chapter 4. Practical evaluation

−4 −2 0 2 4 6 8
x [m]

−2

0

2

4

6

8

10

12

[m

]

Aligned SVO pose estimation to the ground truth

ground truth
VIO estimation
difference

(a)

−4 −2 0 2 4 6 8 10
x [m]

−6

−4

−2

0

2

4

6

[m

]

Aligned SVO pose estimation to the ground truth

ground truth
VIO estimation
difference

(b)

Figure 4.17: The figure (a) represents the aligned trajectories of SVO and ground truth for 0◦ camera orien-
tation and 0.5 m s−1 UAV velocity, ATE=1.3395 m. The figure (b) represents the aligned trajectories of SVO
and ground truth for 0◦ camera orientation and 1 m s−1 UAV velocity, ATE=1.3038 m. For both figures, the
difference between samples (red line) is plotted only for every 10-th sample.

Until now, the UAV was always facing towards the direction of the flight. Hence the
camera was in front of the UAV. However, several tests showed up that constant UAV ori-
entation during the flight might increase the performance in the real environment, as shown
in Figure 4.18. The reason is the more or less constant light conditions during the whole
flight and minimized camera rapid movements/rotations giving a stable amount of features
during the whole flight. Suprisingly, the 3 m high velocity flight show in Figure 4.18 was really
successful with minimal drift, despite the fast velocity changes. That shows that S-MSCKF
might be strong on fast flights, as authors also tested on their camera setup. Next, the 0◦

camera orientation flight is shown in Figure 4.18 just proves that constant camera orienta-
tion giving constant light condition increases the estimation precision. However, the constant
UAV orientation is impractical for the real deployment of the UAV. The UAV consists of a
different set of sensors and end effectors such as grippers, nozzels of probes for interaction
with the environment for a given task or scenario. The UAV scenario presumes particular
UAV orientation, which usually cannot be constant during the flight.

Unfortunately, the tests with 10◦ and 30◦ camera orientation were not performed due
to limited time available to perform the real experiments.

4.8. Real experiments 65

−12 −10 −8 −6 −4 −2 0
x [m]

−6

−4

−2

0

2

4

6

y
[m

]
Aligned S-MSCKF pose estimation to the g ound t uth

g ound t uth
VIO estimation
diffe ence

(a)

−12 −10 −8 −6 −4 −2
x [m]

−8

−6

−4

−2

0

2

4

6

y
[m

]

Aligned S-MSCKF pose estimation to the g ound t uth

g ound t uth
VIO estimation
diffe ence

(b)

Figure 4.18: The figure (a) represents the aligned trajectories of ground truth and S-MSCKF algorithm for
0◦ camera orientation, 1 m s−1 UAV velocity and fixed UAV orientation giving ATE=0.7574 m. The figure
(b) represents the aligned trajectories of ground truth and S-MSCKF algorithm for 90◦ camera orientation,
3 m s−1 UAV velocity and fixed UAV orientation giving ATE=0.4617 m. For both figures, the difference between
samples (red line) is plotted only for every 10-th sample.

66 Chapter 4. Practical evaluation

Chapter 5

Conclusion

In this thesis, the suitability of VIO algorithms has been tested within the control sys-
tem of the UAV. According to the prior survey, three algorithms have been chosen as the
suitable ones, namely filter-based S-MSCKF, semi-direct VO called SVO, and optimization-
based VINS-Fusion. From the available hardware cameras from Intel RealSense, the D435i
camera was chosen for real experiments. The trajectory was adjusted to fulfill the UAV ac-
celeration limits and to smooth the UAV movements during the flight. For all algorithms,
the estimation performance has been tested on a predefined square-shaped trajectory in the
simulator environment. Several camera orientations have been used to evaluate the best per-
formance together with several UAV velocities. All algorithms proved the ability to estimate
the UAV position from the recorded GPS-controlled flight datasets in the gazebo simulation
environment for all used camera orientations and UAV velocities. The feedback loop inte-
gration into the simulated UAV model was tested for all algorithms with all used camera
orientations and several UAV velocities. Next, the real datasets were captured with the D435i
camera attached to the real UAV for all assumed orientations and velocities. In these flights,
the RTK GPS was used for the UAV control and later as the ground truth for comparison.
Real datasets recordings were influenced mainly by two factors. First, the camera exposure
has to react to changing sunlight due to the orientation changes during the flight. This can be
partially removed by using the pitched camera, dismissing the direct sunlight influence on the
camera. Secondly, the UAV propellers influence the IMU measurements with noisy vibrations
degrading the IMU usability. Despite the mentioned issues, S-MSCKF and SVO algorithms
were successfully integrated into the feedback loop of the real UAV.

To summarize the result, all of the tested algorithms were capable of feedback loop
flights within the simulation environment UAV control system for all camera orientations.
The 90◦ camera orientation had the best result according to the used metric within the simu-
lation environment. As expected, the higher the UAV velocity, the slightly worse results, but
the reasonable UAV velocity is between 1 m s−1 and 2 m s−1. The results show an expected
decrease in performance when the algorithms are run on real datasets. In real environment,
the camera faces different conditions in terms of exposure changes due to the sunlight. An-
other encountered issue is the propeller-induced vibrations, which influences the noise of IMU
measurements. Unfortunately, the VINS-Fusion algorithm was not tested directly in the feed-
back loop of the real UAV, but it seems to be promising for further investigation. S-MSCKF

68 Chapter 5. Conclusion

algorithm handles these conditions as the best from tested algorithms, and it is suitable for
further use in the feedback loop of the UAV control system.

The following assigned tasks have been accomplished in this thesis:

• A survey of available VIO algorithms, especially SVO and MSCKF was performed.

• The author became familiar with stereo cameras, particularly Intel RealSense cameras,
and their integration into the ROS middleware, Gazebo simulator, and MRS group UAV
platform.

• A dataset from a real-world UAV flight with precise GPS was prepared and the perfor-
mance of the algorithms on this dataset were compared.

• The algorithms were integrated into the Gazebo simulator and the mounting position
of the camera on the UAV affecting the performance of the algorithms was examined.

• The algorithms were prepared for the integration into the position feedback control loop
of the UAV and its feasibility was tested in the Gazebo simulator.

• A trajectory-shaping filter improving the localization precision of the algorithms was
designed and implemented.

Multimedia material of this work is available on the website http://mrs.felk.cvut.

cz/bednar2020thesis

5.0.1 Future work

This work showed several ideas about how to improve the VIO estimation precision for
chosen algorithms in the MRS system. The used RealSense D435i camera does not guarantee
the perfect time synchronization of captured images and IMU measurements. An improve-
ment might appear with the usage of the hand made camera-IMU unit with hardware time
synchronization between camera and IMU, providing minimal time delay. Also, the temporal
calibration process advertised in Chapter 3.3 can be extended into the other algorithms to
further improve the time synchronization between camera images and IMU measurements.

The D435i camera was held by a firm holder, as shown in Figure 4.12. However, this type
of attachment transmits the propeller-induced vibrations into the IMU measurements. Hence
a dampened holder for the camera might help to increase the IMU measurement reliability.
Also, the 90◦ camera orientation struggles with the start on the ground, but it is more stable
in the air due to constant light conditions. The holder can consist of a DC-motor to change the
camera angle and use the advantage of individual camera orientations in specific scenarios.

The implemented trajectory shaping assumes the acceleration constraint of the UAV.
The MPC tracker, however, has its constraints also for the jerk, which were set accordingly
to have a smooth trajectory but to fly most of the time with the desired velocity. Generating
the trajectory with the jerk constraint considered could improve UAV behavior, especially for
higher acceleration constraints, when the smoothness is more desired.

http://mrs.felk.cvut.cz/bednar2020thesis
http://mrs.felk.cvut.cz/bednar2020thesis

Bibliography

[1] B. Canis, “Unmanned aircraft systems (uas): Commercial outlook for a new industry,”
2015.

[2] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory
tracking and collision avoidance for reliable outdoor deployment of unmanned aerial
vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018.

[3] V. Walter, N. Staub, A. Franchi, and M. Saska, “UVDAR System for Visual Relative
Localization with application to Leader-Follower Formations of Multirotor UAVs,” IEEE
RAL - online first, 2019.

[4] R. Pěnička, J. Faigl, M. Saska, and P. Váňa, “Data collection planning with non-zero
sensing distance for a budget and curvature constrained unmanned aerial vehicle,” Au-
tonomous Robots, 2019.

[5] T. Baca, P. Stepan, V. Spurny, M. Saska, J. Thomas, G. Loianno, and V. Kumar, “Au-
tonomous landing on a moving vehicle with an unmanned aerial vehicle,” Journal of
Field Robotics - online first, 2019.

[6] V. Spurny, T. Baca, M. Saska, R. Penicka, T. Krajnik, J. Thomas, D. Thakur, G. Loianno,
and V. Kumar, “Cooperative Autonomous Search, Grasping and Delivering in a Treasure
Hunt Scenario by a Team of UAVs,” Journal of Field Robotics, vol. 36, no. 1, pp. 125–148,
2019.

[7] G. Loianno, V. Spurny, T. Baca, J. Thomas, D. Thakur, T. Krajnik, A. Zhou, A. Cho,
M. Saska, and V. Kumar, “Localization, grasping, and transportation of magnetic ob-
jects by a team of mavs in challenging desert like environments,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1576–1583, 2018.

[8] P. Ješke, Š. Klouček, and M. Saska, “Autonomous compact monitoring of large areas us-
ing micro aerial vehicles with limited sensory information and computational resources,”
in Lecture Notes in Computer Science, vol 11472. Springer International Publishing,
2019.

[9] M. Petrĺık, T. Báča, D. Heřt, M. Vrba, T. Krajńık, and M. Saska, “A robust uav system
for operations in a constrained environment,” in IEEE ICRA, 2020, under review.

70 Bibliography

[10] M. Saska, V. Kratky, V. Spurny, and T. Baca, “Documentation of dark areas of large
historical buildings by a formation of unmanned aerial vehicles using model predictive
control,” in IEEE ETFA, 2017.

[11] R. Richardson, R. Fuentes, T. Chapman, M. Cook, J. Scanlan, Z. Li, and D. Flynn,
“Robotic and autonomous systems for resilient infrastructure,” 2017.

[12] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible and scalable slam
system with full 3d motion estimation,” in Proc. IEEE International Symposium on
Safety, Security and Rescue Robotics (SSRR). IEEE, November 2011.

[13] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.” in Robotics:
Science and Systems, vol. 2, 2014, p. 9.

[14] J. Delmerico and D. Scaramuzza, “A benchmark comparison of monocular visual-inertial
odometry algorithms for flying robots,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 2502–2509.

[15] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. Achtelik, and
R. Siegwart, “The euroc micro aerial vehicle datasets,” The International Journal of
Robotics Research, vol. 35, 01 2016.

[16] A. Q. Li, A. Coskun, S. M. Doherty, S. Ghasemlou, A. S. Jagtap, M. Modasshir, S. Rah-
man, A. Singh, M. Xanthidis, J. M. O’Kane et al., “Experimental comparison of open
source vision-based state estimation algorithms,” in International Symposium on Exper-
imental Robotics. Springer, 2016, pp. 775–786.

[17] J. Engel, V. Usenko, and D. Cremers, “A photometrically calibrated benchmark for
monocular visual odometry,” arXiv preprint arXiv:1607.02555, 2016.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2012, pp. 3354–3361.

[19] M. K. Paul, K. Wu, J. A. Hesch, E. D. Nerurkar, and S. I. Roumeliotis, “A comparative
analysis of tightly-coupled monocular, binocular, and stereo vins,” in 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 165–172.

[20] S. Houben, J. Quenzel, N. Krombach, and S. Behnke, “Efficient multi-camera visual-
inertial slam for micro aerial vehicles,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 1616–1622.

[21] Y. Song, S. Nuske, and S. Scherer, “A multi-sensor fusion mav state estimation from
long-range stereo, imu, gps and barometric sensors,” Sensors, vol. 17, no. 1, p. 11, 2017.

[22] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J. Taylor, and
V. Kumar, “Robust stereo visual inertial odometry for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 965–972, 2018.

[23] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odometry using
a direct ekf-based approach,” in 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, 2015, pp. 298–304.

Bibliography 71

[24] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated extended kalman
filter based visual-inertial odometry using direct photometric feedback,” The Interna-
tional Journal of Robotics Research, vol. 36, no. 10, pp. 1053–1072, 2017.

[25] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “Svo: Semidi-
rect visual odometry for monocular and multicamera systems,” IEEE Transactions on
Robotics, vol. 33, no. 2, pp. 249–265, 2016.

[26] T. Qin, J. Pan, S. Cao, and S. Shen, “A general optimization-based framework for local
odometry estimation with multiple sensors,” arXiv preprint arXiv:1901.03638, 2019.

[27] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based visual-
inertial odometry using nonlinear optimization,” The International Journal of Robotics
Research, vol. 34, 02 2014.

[28] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[29] T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory
tracking and collision avoidance for reliable outdoor deployment of unmanned aerial
vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 1–8.

[30] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor
uav on se (3),” in 49th IEEE conference on decision and control (CDC). IEEE, 2010,
pp. 5420–5425.

[31] B. P. Gerkey and R. T. Vaughan, “Really reusable robot code and the player/stage
project,” Software Engineering for Experimental Robotics, Springer Tracts on Advanced
Robotics, 2007.

[32] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library.
” O’Reilly Media, Inc.”, 2008.

[33] V. Walter, T. Novák, and M. Saska, “Self-localization of unmanned aerial vehicles based
on optical flow in onboard camera images,” in Lecture Notes in Computer Science, vol
10756. Cham: Springer International Publishing, 2018.

[34] P. T. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibration for
multi-sensor systems,” 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1280–1286, 2013.

[35] P. Furgale, C. H. Tong, T. D. Barfoot, and G. Sibley, “Continuous-time batch trajec-
tory estimation using temporal basis functions,” The International Journal of Robotics
Research, vol. 34, no. 14, pp. 1688–1710, 2015.

[36] J. Maye, P. T. Furgale, and R. Siegwart, “Self-supervised calibration for robotic systems,”
2013 IEEE Intelligent Vehicles Symposium (IV), pp. 473–480, 2013.

[37] V. A. A. Variance, “Noise analysis for gyroscopes. 2015,” Freescale Semiconductor Ap-
plication Note AN5087.

72 Bibliography

[38] O. J. Woodman, “An introduction to inertial navigation,” University of Cambridge,
Computer Laboratory, Tech. Rep., 2007.

[39] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter for
vision-aided inertial navigation,” in Proceedings 2007 IEEE International Conference
on Robotics and Automation. IEEE, 2007, pp. 3565–3572.

[40] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-inertial odometry,”
The International Journal of Robotics Research, vol. 32, no. 6, pp. 690–711, 2013.

[41] ——, “Optimization-based estimator design for vision-aided inertial navigation,” in
Robotics: Science and Systems, 2013, pp. 241–248.

[42] M. Trajković and M. Hedley, “Fast corner detection,” Image and vision computing,
vol. 16, no. 2, pp. 75–87, 1998.

[43] B. D. Lucas, T. Kanade et al., “An iterative image registration technique with an appli-
cation to stereo vision,” 1981.

[44] B. Kitt, A. Geiger, and H. Lategahn, “Visual odometry based on stereo image sequences
with ransac-based outlier rejection scheme,” in 2010 ieee intelligent vehicles symposium.
IEEE, 2010, pp. 486–492.

[45] C. G. Harris, M. Stephens et al., “A combined corner and edge detector.” in Alvey vision
conference, vol. 15, no. 50. Citeseer, 1988, pp. 10–5244.

[46] S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invariant scalable key-
points,” in 2011 IEEE international conference on computer vision (ICCV). Ieee, 2011,
pp. 2548–2555.

[47] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct monocular visual
odometry,” in 2014 IEEE international conference on robotics and automation (ICRA).
IEEE, 2014, pp. 15–22.

[48] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial
state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[49] J. Shi et al., “Good features to track,” in 1994 Proceedings of IEEE conference on com-
puter vision and pattern recognition. IEEE, 1994, pp. 593–600.

[50] D. Nister, “An efficient solution to the five-point relative pose problem,” in 2003 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Pro-
ceedings., vol. 2. IEEE, 2003, pp. II–195.

[51] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n) solution to the pnp
problem,” International journal of computer vision, vol. 81, no. 2, p. 155, 2009.

[52] P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs in statistics.
Springer, 1992, pp. 492–518.

[53] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.org.

http://ceres-solver.org

Bibliography 73

[54] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast place recognition in
image sequences,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.

[55] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent
elementary features,” in European conference on computer vision. Springer, 2010, pp.
778–792.

[56] T. Qin and S. Shen, “Online temporal calibration for monocular visual-inertial systems,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 3662–3669.

[57] E. Mair, M. Fleps, M. Suppa, and D. Burschka, “Spatio-temporal initialization for imu to
camera registration,” in 2011 IEEE International Conference on Robotics and Biomimet-
ics. IEEE, 2011, pp. 557–564.

[58] J. Kelly and G. S. Sukhatme, “A general framework for temporal calibration of multiple
proprioceptive and exteroceptive sensors,” in Experimental Robotics. Springer, 2014,
pp. 195–209.

[59] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based framework for global
pose estimation with multiple sensors,” arXiv preprint arXiv:1901.03642, 2019.

[60] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2012, pp. 3354–3361.

[61] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for
the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 573–580.

[62] B. K. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Josa
a, vol. 4, no. 4, pp. 629–642, 1987.

[63] M. Petrĺık, V. Vonásek, and M. Saska, “Coverage optimization in the cooperative
surveillance task using multiple micro aerial vehicles,” in 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Oct 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8914330

[64] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-
robot simulator,” in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Sendai, Japan, Sep 2004, pp. 2149–2154.

[65] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys, “Pixhawk:
A micro aerial vehicle design for autonomous flight using onboard computer vision,”
Autonomous Robots, vol. 33, pp. 21–39, 2012.

https://ieeexplore.ieee.org/document/8914330

74 Bibliography

Appendices

CD Content

In Table 1 are listed names of all root directories on CD.

Directory name Description

thesis the thesis in pdf format
kalibr the Kalibr example output
realsense to imu the ROS package to merge IMU data from RealSense camera
s msckf configuration files of S-MSCKF algorithm
scripts additional scripts for rosbags processing
simulation filter the ROS package for simulator message filtering
svo configuration files for SVO algorithm
trajectory shaping trajectory shaping filter source code
vins configuration files of VINS-Fusion algorithm
README.txt additional info

Table 1: CD Content

78

List of abbreviations

In Table 2 are listed abbreviations used in this thesis.

Abbreviation Meaning

UAV Unmanned Aerial Vehicle
MAV Micro Aerial Vehicle
DOPN Dubins Orienteering Problem with Neighborhoods
SAR Search And Rescue
UVDAR Ultra Violet Direction and Ranging
DARPA Defense Advanced Research Projects Agency
GPS Global Positioning System
GNSS Global Navigation Satellite System
DGNSS Differential Global Navigation Satellite System
RTK Real-Time Kinematics
LIDAR Light Detection and Ranging
SLAM Simultaneous Localization and Mapping
V-SLAM Vision-based SLAM
IMU Inertial Measurement Unit
VO Visual Odometry
VIO Visual-Inertial Odometry
S-MSCKF Stereo Multi-State Constraint Kalman Filter
KLT Kanade-Lucas-Tomasi
RANSAC Random sample consensus
BRISK Binary Robust Invariant Scalable Keypoints
ROVIO Robust Visual-Inertial Odometry
VINS Visual-Inertial System
OKVIS Open Keyframe-Based Visual-Inertial SLAM
SVO Semi-Direct Visual Odometry
PC Personal Computer
CPU Central Processing Unit
EEPROM Electrically Erasable Programmable Read-Only Memory
MPC Model Predictive Control
EKF Extended Kalman Filter
MSCKF Multi-State Constraint Kalman Filter

80

Abbreviation Meaning

MBZIRC Mohamed Bin Zayed International Robotics Challenge
MSCKF Multi-State Constraint Kalman Filter
LTI Linear Time-Invariant
DoF Degrees of Freedom
IDL Interface Definition Language
ROS Robotic Operating System
MRS Multi-robot Systems
BSD Berkeley Software Distribution
FCU Flight Control Unit
ESC Electronic Speed Control
FoV Filed of View
FPS Frames Per Second
PDF Portable Document Format
RMSE Root Mean Square Error
EuRoC European Robotics Challenge
SfM Structure from Motion
DSO Direct Sparse Odometry
LSD-SLAM Large-Scale Direct Monocular SLAM
PnP Perspective-n-Point
HKUST Hong Kong University of Science and Technology
ATE Absolute Trajectory Error
RPE Relative Pose Error

Table 2: Lists of abbreviations

81

	List of Figures
	List of Tables
	Introduction
	Related work
	Preliminaries
	Contribution
	Outline

	Hardware setup
	Intel RealSense cameras
	Depth camera - D435i
	Tracking camera - T265
	IMU
	Camera installation

	Calibration tools
	Kalibr
	Intel RealSense IMU Calibration tool
	IMU Noise Model

	UAV platform

	Vision Algorithms
	Stereo Multi-State Constraint Kalman Filter (S-MSCKF)
	Implementation

	Semi-Direct Visual Odometry (SVO)
	Implementation

	VINS-Mono
	Implementation

	Practical evaluation
	Evaluation metrics
	Trajectory planning
	Trajectory shaping
	Gazebo simulator
	S-MSCKF
	SVO
	VINS-Fusion

	Algorithm compatibility with MRS system
	Testing scenarios
	Simulator experiments
	Camera orientation test
	High altitude test
	High FPS rate
	Feedback control

	Real experiments
	Dataset acquisition
	Dataset algorithms comparison
	Feedback control with the real UAV

	Conclusion
	Future work

	Bibliography
	Appendices
	List of abbreviations

